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ML/AI is used in applications where the stakes are high, with 
both lucrative rewards and severe consequences for errors
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We want AI systems that are not only performant, but also  
robust, resilient and trustworthy

Robustness

Ability of a system to maintain 

stable performance despite 
variations or disturbances 
within expected ranges.

Resilience

Ability of a system to adapt to 

unexpected disruptions or 
failures, maintaining 

functionality and performance

Trustworthiness

Ability of a system to be 

reliable, fair, transparent, and 
ethical, thus instilling 

confidence in its stakeholders



With robust models, we want models to generalize to 
unseen data regimes (within expected ranges)

Machine learning models like deep neural 
networks generalize well when train and 
test are i.i.d. from the same distribution

Synthetic perturbations

Hendrycks & Dietterich, Benchmarking Neural Network Robustness to 
Common Corruptions and Perturbations 



Real distribution shifts

Koh et al., WILDS: A Benchmark of in-the-Wild Distribution Shifts, 2020 

With robust models, we want models to generalize to 
unseen data regimes (within expected ranges)
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Adversarial Perturbations

With robust models, we want models to generalize to 
unseen data regimes (within expected ranges)

Machine learning models like deep neural 
networks generalize well when train and 
test are i.i.d. from the same distribution



A more formal characterization of generalization regimes  
in ML models

Train Data

Test Data

With ERM, we minimize the loss

Does this minimize                              ?                      

Data Augmentation 
Distributionally Robust Optimization 

Train-time/Test-time Adaptation

Make additional assumptions about what can 
change between train and test, and collect 

additional data when feasible

What can we do?



What are these assumptions?

Covariate shift assumption: Distribution of the input features changes between train and 
test, while the relationship between the features and the target remains unchanged.

density function

day time night time importance weighting



What are these assumptions?

Covariate shift assumption: Distribution of the input features changes between train and 
test, while the relationship between the features and the target remains unchanged.

density function

Wasserstein distance between two distributions



What are these assumptions?

Label shift assumption: Distribution of the labels changes between train and test, while 
the semantics corresponding to the classes remains the same.

importance weighting



What are these assumptions?

Subpopulation shift assumption: Class-conditioned distribution of nuisance attributes 
can arbitrarily change between train and test, or spurious correlation in the train data.

Spurious Correlation Attribute Imbalance



What are these assumptions?

And new paradigms are continuing to emerge!!

Concept Shift Jailbreaks



Handling Covariate Shifts with 
Generative Models

Detecting Sub-Population Shifts 
with Vision-Language Models 

TODAY’S TALK

Detecting Sub-Population Shifts 
with Vision-Language Models 

Towards General-Purpose 
Failure Detectors



Deep generative models enable compositional modeling of 
complex data distributions

Can we use pre-trained generative models to characterize unknown 
distribution shifts and subsequently improve the model performance in 

downstream tasks?

Image Generative Models



Producing a desired image using the generator 
amounts to identifying its corresponding latent code

While generative models (both decoder-only and encoder-decoder style) can potentially extrapolate 
through novel combinations of latent factors, how does one control it?

  

Let us take the example of ill-
posed image recovery

latents



What happens when we attempt to recover an OOD 
image using this approach?

Daras et al., 2021

• Non-robust nature of W+ optimization

• Lack of priors in W+ to regularize the inversion



By expressing uncertainties in the style space, we can 
impose an implicit vicinal regularization

Improved StyleGAN-v2 based Inversion for 
Out-of-Distribution Images

ICML 2022
R. Subramayam, V. Narayanaswamy, M. Naufel, 

A. Spanias, J. J. Thiagarajan

• Learn a distributional mapping from P(Z) to P(W+), such that any realization recovers the observation 

• Projection head that decouples the different style latent spaces

• Produces solutions that are locally robust



SPHInX consistently leads to higher fidelity inversion 
under challenging covariate/geometric shifts

BDInvert [Kang et al., 2021]



Will the style attribute directions from the original 
generator make sense for OOD data?

attribute direction



Superior performance in ill-posed image recovery 
without any additional training

Compressive Recovery

Prior: StyleGAN trained on FFHQ faces

Inter. Layer Opt BDInvert Ours

So what can SPHInX do? Can effectively leverage the over-parameterized latent space to 
produce OOD images without modifying the generator


And what it cannot do? Cannot provide priors for a target distribution to sample using the 
generator



But that is not enough! Today’s generative models are able 
to provide useful, synthetic data for downstream tasks!

Real Generated

Azizi et al., 2023



Wait… Can’t we train an auxiliary generative model for the 
latent representations to enable sample generation?

Adapting Blackbox Generative Models via 
Inversion

ICML 2023 Workshop on Challenges in 
Deployable AI

S. Mitra, R. Subramanyam, R.Anirudh, A. 
Shukla, P. Turaga, J. J. Thiagarajan

Yes. we can learn to 
recover the distribution in 

the latent space!Latent Diffusion Model



Wait… Can’t we train an auxiliary generative model for the 
latent representations to enable sample generation?

MineGAN++AdvIN

So what’s the catch? AdvIN can generate high-quality data from any target distribution but the 
diversity is controlled by the target dataset (data augmentation can help to an extent)!!

Works well only for 
subpopulations of 
the original data 

distribution

[Wang et al., 2022]

**Li et al., Self-conditioned Image Generation via Generating Representations, 2023



Instead, can we can directly adapt the generator to 
emulate the target domain characteristics?

GENERATIVE MODEL
Invert Synthesize

Human: Do you know how to create this cartoon cat?

AI: Oh yes. Just invert that image into my latent space!


Human: Now generate dogs in the same style!

AI: What’s that? Show me some examples for that.

By adapting the generator, we can 
parameterize the unknown shift using 

the generator parameters

interpolation

Weight SpaceModel A

Model B

An extension of the idea of geodesic 
interpolation between two feature manifolds 

for transfer learning (Robey et al., 2021)



Let us continue with the example of StyleGANs and 
perform data-efficient adaptation under shifts

Discriminator or any 
external network

targetStyle-mixed 
latent code

Inversion: We use a standard inverter (e.g., 
PsP) pre-trained on in-distribution data

Style Mixing: In the true latent code, 
manipulate the latents corresponding to 

style layers (e.g, layers 8-18 for image 
resolution 1024 x 1024)

Surprising finding: We are able to perform this 
update even with a single target example



Now, synthetic data generation can be achieved by 
manipulating the activations in the updated generator

SiSTA: Target-Aware Generative 
Augmentations for Single-Shot Adaptation 

ICML 2023 
K. Thopalli, R. Subramanyam, P. Turaga, J. J. 

Thiagarajan



SiSTA achieves state-of-the-art performance in single-
shot domain adaptation 



SiSTA achieves state-of-the-art performance in single-
shot domain adaptation 
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Existing training strategies are not consistently effective 
across different subpopulation shifts 

score based on 
model predictions

examples: MSP, Model disagreement, 
Energy, LMS, uncertainty estimates

Subpopulation shifts arise due to spurious correlations 
or discrepancy in nuisance attributes across train and 

test settings. [Yang et al., ICML 2023]

Specifying all relevant 
attributes visually becomes 
challenging in practice —> 
Vision-Language Models 

can be useful!



Vision Language Models connect images and text 
through contrastive training objectives

from Redford et al., 2021



With the use of VLMs, our hope is  to specify and 
capture meaningful attributes relevant to a given task

Task Model ❄

LARGE 
LANGUAGE 

MODEL

Prompt: List 20 distinct two-word 
phrases that uniquely describe the 

visual characteristics of 
{class_name}.  

Response: long neck, yellow eyes, 
broad wingspan…Attribute-augmented 

class prompt

AGGREGATE

matching

Vision-Language Model

Map from task 
features into CLIP 

feature space 

❌



A simple detector for failure under subpopulation shifts

Measure 
agreement

Explain disagreement 
via attribute ablation

Ablate attributes to improve 
agreement between task 
model and prior-induced 

model

TEXT-TO-
IMAGE 

GENERATION

Task Model

PRIME: Leveraging Vision-Language Priors 
for Improved Model Failure Detection and 

Explanation  
Under Review, 2024

R. Subramanyam, V. Narayanaswamy, K. 
Thopalli, J. J. Thiagarajan



PRIME improves upon existing measures in predicting 
failure under subpopulation shifts

Dataset Method MCC

Waterbirds

MSP 0.242

Energy 0.281

Model 
Disagreement 0.283

PRIME 0.456

Dataset Method MCC

CelebA

MSP 0.363

Energy 0.368

Model 
Disagreement 0.376

PRIME 0.493



And can even estimate failure under covariate shifts

Train Test Improvement

Photo

Photo +0.21

Art +0.15

Cartoon +0.08

Sketch +0.06

Train Test Improvement

Cartoon

Photo +0.31

Art +0.2

Cartoon +0.29

Sketch +0.32

Train Test Improvement

Art

Photo +0.23

Art +0.41

Cartoon +0.29

Sketch +0.19

Train Test Improvement

Sketch

Photo +0.2

Art +0.18

Cartoon +0.31

Sketch +0.15
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Model failure can be caused by many factors! Handcrafting 
detectors can be challenging in practice!

Are prediction uncertainties all 
you need?

Towards general purpose failure detectors 
that can identify all risk regimes

Uncertainties are necessary but not 
sufficient (e.g., cannot detect label 

noise) —> Need to take into account 
conformity to the data manifold

Assume no access to calibration data 
from extrapolation regimes



Relative representations: A new principle for single-
model uncertainty characterization in deep neural networks

Probabilistic Approach Variational Approach Sampling

Neural tangent kernel (NTK) induced by 
deep neural networks is not shift-invariant!

Idea: Why not do stochastic centering to 
explore different hypotheses?Estimating Epistemic Uncertainties in DNNs



In practice, we just transform the prediction task into the 
joint distribution of (anchors, residuals)

enforce consistency

anchor distribution

Single Model Uncertainty Estimation 
via Stochastic Data Centering 

NeurIPS 2022
J. J. Thiagarajan, V. Narayanaswamy, R. 

Anirudh, P. T. Bremer

Accurate and Scalable Estimation of 
Epistemic Uncertainty for GNNs 

ICLR 2024
P. Trivedi, M. Heimann, R. Anirudh, D. 

Koutra, J. J. Thiagarajan

dim = 3



Using relative representations, we define a new notion of 
manifold conformity

Flexibility of relative 
representations

Forward Anchoring Reverse Anchoring 

random train sampletest sample

Difficulty in recovering the target for a random training sample using the test sample as the 
anchor is a measure of non-conformity

It is not sufficient for the test sample to be a meaningful 
anchor, it must also recover the true y accurately

PAGER: Accurate Failure Characterization in 
Deep Neural Networks  

Under Review, 2024
J. J. Thiagarajan, V. Narayanaswamy, P. Trivedi, 

R. Anirudh



Using both uncertainty and non-conformity, we can 
characterize risk regimes without post-hoc calibration

PAGER produces state-of-the-art failure detection performance across both regression and 
classification models under covariate and label shifts



Back to this — AI systems that are not only performant, but 
also  robust, resilient and trustworthy
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