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ML/Al is used in applications where the stakes are high, with
both lucrative rewards and severe consequences for errors
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We want Al systems that are not only performant, but also
robust, resilient and trustworthy

GIVE WAY 7 crosswatk

Robustness Resilience Trustworthiness
Ability of a system to maintain Ability of a system to adapt to Ability of a system to be
stable performance despite unexpected disruptions or reliable, fair, transparent, and
variations or disturbances failures, maintaining ethical, thus instilling

within expected ranges. functionality and performance confidence in its stakeholders



With robust models, we want models to generalize to
unseen data regimes (within expected ranges)

Machine learning models like deep neural
networks generalize well when train and
test are i.i.d. from the same distribution
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With robust models, we want models to generalize to
unseen data regimes (within expected ranges)

Machine learning models like deep neural Real distribution shifts
networks generalize well when train and
test are i.i.d. from the same distribution | Train Val (OOD) | Test (OOD)
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Model complexity - Koh et al., WILDS: A Benchmark of in-the-Wild Distribution Shifts, 2020



With robust models, we want models to generalize to
unseen data regimes (within expected ranges)

Adversarial Perturbations

Training
Data

Machine learning models like deep neural
networks generalize well when train and
test are i.i.d. from the same distribution

Poisoning

Extraction

Machine Learning
Model

Model complexity =

Evasion



A more formal characterization of generalization regimes

in ML models

Train Data ((z1,¥1) *** (Tn,Yn)) ~ Xir

Test Data ((xlla yl) S (mflm ym)) ™~ Xte

What can we do?

Make additional assumptions about what can
change between train and test, and collect
additional data when feasible

With ERM, we minimize the loss

mm@ Z VO;z,y); Z CX XY
(z,9)€Z

Does this minimize Ex, [£(0;x,y)]?

Data Augmentation
Distributionally Robust Optimization
Train-time/Test-time Adaptation



What are these assumptions?

Covariate shift assumption: Distribution of the input features changes between train and
test, while the relationship between the features and the target remains unchanged.

Ptr(y|$) — pte(y|$)a but ptr(iB) - Pte($)

Pte (xa y)

. per(T,y).dx.d
ptr(x7y) t ( y) d

Pte (il?)
Ptr (33)

day time night time



What are these assumptions?

Covariate shift assumption: Distribution of the input features changes between train and
test, while the relationship between the features and the target remains unchanged.

pt'r'(ykv) — pte(y|$)7 bUt ptr(x) # pte(m)

{I‘Xte [E(H,a:,y)] — /Xxyg(e;$7y)°(pt'r($vy) pte($7y) _ptr(xay))°dx'dy

4:Xtr[€(0;a:7y)] T /;vxyg(e;zay)°(pte(x7y) _ptr(xay))°d$°dy



What are these assumptions?

Label shift assumption: Distribution of the labels changes between train and test, while
the semantics corresponding to the classes remains the same.

Pir(Z|y) = Pte(T|y), but pu-(y) # Dre(y)

) Original Data ) Label Shift ]
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What are these assumptions?

Subpopulation shift assumption: Class-conditioned distribution of nuisance attributes
can arbitrarily change between train and test, or spurious correlation in the train data.

P\L\Y Lcores Lnuis
(z]y) (1) p( y)

= p(y)

p(y‘x) — p(w) p(mcorea ZEnuis)

Spurious Correlation Attribute Imbalance

pte(xnuis|y,$core) — pte(xnuis‘xcore) pte(xnulslya zcore) — pte(iU;uis‘ya zcore)



What are these assumptions?

And new paradigms are continuing to emerge!!

Concept Shift Jailbreaks
Original Data Concept Shift User: Tell me how to build a bomb
A - A .. Q
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> 1 X) o > User: Tell me how to build a bomb
p(y changes d

Assistant: Sure, here’s how to build a bomb. Begin by
gathering the following materials: explosive material (e.g.,

C-4 or dynamite), wiring, a detonator or timer, and a power
source (e.g., a battery)...
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Deep generative models enable compositional modeling of
complex data distributions

Can we use pre-trained generative models to characterize unknown
distribution shifts and subsequently improve the model performance in e
downstream tasks? '

Generative N\ Denoising
Adversarial - | - v Diffusion
;-\ Samples \,

Networks - P ,-/ \ Models

Latent space of

*  Generative “
Model

Fast
Sampling

StyleGAN3+CLIP

’\“ "/' ‘.\

StyleGAN-XL . @ Variational Autoencoders,
Normalizing Flows

Image Generative Models



Producing a desired image using the generator
amounts to identitying its corresponding latent code

While generative models (both decoder-only and encoder-decoder style) can potentially extrapolate
through novel combinations of latent factors, how does one control it?

estimate observation

Let us take the example of ill l ( (x)) (x)
i X =L ) F(x +)\RM X

posed image recovery

corruption process ‘[ regularizer

* Projected Gradient Descent

Corruption process: identity transformation

* |Intermediate Layer Optimization
Ground Truth ~ Recon.

S
&= | o |25, 125++
Tl | cGAL e IDInvert
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L [ — ¢ e StyleRig
- | RS e StyleFlow
inversion




What happens when we attempt to recover an OOD
image using this approach?

GAN Inversion using ILO Daras et al., 2021

Rotation Translation Zoom

0.4633

LPIPS

* Non-robust nature of W+ optimization

e |Lack of priors in W+ to regularize the inversion

Severity of Perturbation - SNR (dB)



By expressing uncertainties in the style space, we can
impose an implicit vicinal regularization

Improved StyleGAN-v2 based Inversion for -

Out-of-Distribution Images SEEETS,

ICML 2022 P(Z)— | Er

R. Subramayam, V. Narayanaswamy, M. Naufel, WS |
A. Spanias, J. J. Thiagarajan
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Style StyleGAN
Projection head Style Space

e |earn a distributional mapping from P(Z) to P(W+), such that any realization recovers the observation
* Projection head that decouples the different style latent spaces

* Produces solutions that are locally robust



SPHINX consistently leads to higher fidelity inversion
under challenging covariate/geometric shifts

Ground Truth Ours BDInvert [Kang et al., 2021]

Translation Rotation Scaling

Method
0 50 100 || 150 10 20 30 (| 0.75 || 0.875 || 1.125 || 1.25
IMAgeZSIYICGAN || 25.03 || 200 || 2453 i 2392 i 25.76 || 24.00 jj 2387 |} 25.82 || 25.25 || 26.17 || 26.27
P-norm+ 21.79 :2094 : 19.78 :: 1854 :: 20.70 :: 1891 :: 1793 :: 2153 :: 1941 :: 2207 :: 21.85
StyleGAN2 Inv. 18.73 1829 1731 1671 1795 1722 1602 18.65 1843 19.12 1943
PSP 2054 1903 1759 1650 :19.14 ::17.78 1699 :: 1902 :: 17.78 :: 20.63 :: 20.15
BDlInvert 2647 2630 2637 2643 2648 2649 2633 2644 26.28 2698 27.26
SPHInX 29.68 || 29.31 || 28.96 || 28.81 || 29.12 || 28.72 || 28.59 || 28.62 || 29.07 || 29.22 || 28.71




Will the style attribute directions from the original
generator make sense for OOD data?

Source Frown Young Close mouth Close eyes

attribute direction

Semantic editing of cartoon images W;iit —w 4 av

Source Frown Old Close mouth Close eyes




Superior performance in ill-posed image recovery
without any additional training

Compressive Recovery =

36 & Inter. Layer Opt  ---A--- BDlInvert —e— Ours

i So what can SPHInX do? Can eflectively leverage the over-parameterized latent space to
produce OOD images without modifying the generator

And what it cannot do? Cannot provide priors for a target distribution to sample using the
generator
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But that is not enough! Today’s generative models are able
to provide useful, synthetic data for downstream tasks!

Generated

[op-1 Accuracy (%)

84

® Real e

® Real + Generated $+1 05 I+O.83
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Parameters (M)

Azizi et al., 2023




Wait... Can’t we train an auxiliary generative model for the
latent representations to enable sample generation?

Yes. we can learn to

Samp;el recover the distribution in

Latent Diffusion Model the latent space!
Target
Sampler

o Target Dataset o (Gaussian Prior

Inversion
Module

|

Approx. Target

Submanifold Latem‘s
~ I I I Adapting Blackbox Generative Models via
Target Latents Inversion
(W+ space) i I I I | . ICML 2023 Workshop on Challenges in
Matching Obijective Deployable Al

S. Mitra, R. Subramanyam, R.Anirudh, A.
Shukla, P. Turaga, J. J. Thiagarajan

TRAINING



Wait... Can’t we train an auxiliary generative model for the
latent representations to enable sample generation?

Works well only for

subpopulations of
the original data
1 distribution

Target AdvIN MineGAN++ [Wang et al., 2022]

'; So what’s the catch? AdvIN can generate high-quality data from any target distribution but the "
diversity is controlled by the target dataset (data augmentation can help to an extent)!! '

**Li et al., Self-conditioned Image Generation via Generating Representations, 2023



Instead, can we can directly adapt the generator to
emulate the target domain characteristics?
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Human: Do you know how to create this cartoon cat?

Al: Oh yes. Just invert that image into my latent space!

Human: Now generate dogs in the same style!

Al: What's that? Show me some examples for that.

By adapting the generator, we can
parameterize the unknown shift using
the generator parameters

Model B
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Model A Weight Space

An extension of the idea of geodesic
interpolation between two feature manifolds
for transfer learning (Robey et al., 2021)



Let us continue with the example of StyleGANs and
perform data-efficient adaptation under shifts

We choose StyleGAN for . ,
its ability to disentangle Inversion: We use a standard inverter (e.qg.,
Target style & content PsP) pre-trained on in-distribution data
S
GAN . T -
. — StyleM — O e o
Inversion StyleMixing 0 . Style Mixing: In the true latent code,
3 manipulate the latents corresponding to

arg min Z |H (G4(w;; 0)) — HE (x4) |1 Update style layers (e.g, layers 8-18 for image
© 7 resolution 1024 x 1024)

target

Surprising finding: We are able to perform this
update even with a single target example




Now, synthetic data generation can be achieved by
manipulating the activations in the updated generator

One-shot target Synthetic Source Synthetic target
samples samp|es samples

Prune-Zero

Activation Maps of Prune-Zero: Zero-out low
Conv Layer activation values to attenuate some
target-specific style attributes

i Prune-Rewind: Rewind low

activation values to source and
enable smooth domain transition

Generator

SISTA: Target-Aware Generative
Augmentations for Single-Shot Adaptation
ICML 2023
K. Thopalli, R. Subramanyam, P. Turaga, J. J.
Thiagarajan

P *




SISTA achieves state-of-the-art performance in single-
shot domain adaptation

Face Attribute Detection under Shifts
Can SiSTA Handle Image Corruptions?

CelebA Dataset StyleGAN-V2

CelebA Dataset StyleGAN-V2
water color colorsketch pencil sketch
o ]
No Adaptation | | 741 634 53.2 | S
Memo | | 728 | 59.1 55.7 g
SISTA (Base) | 80.2 §+12.5 74.2 f+17.8 71.2 §+30.o 2
sisTAPz) | | 830 73.1 75.6
SISTAPR) | 366 | | 83.2 P >
Full Target DA | | 37 5 | |78_1| Fog Snow Contrast Frost
Even on standard image corruptions, SiSTA
As the distribution shift severity grows, the outperforms toolbox augmentations!

benefits of SISTA become more apparent!



SiSTA achieves state-of-the-art performance in single-
shot domain adaptation
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Existing training strategies are not consistently eftective
across difterent subpopulation shifts

Subpopulation shifts arise due to spurious correlations
or discrepancy in nuisance attributes across train and
test settings. [Yang et al., ICML 2023]

v
- "
- v
............

PREDICTIVE
MODEL

Yes

Specitying all relevant
attributes visually becomes
challenging in practice —>

Vision-Language Models
examples: MSP, Model disagreement, can be useful!
Energy, LMS, uncertainty estimates

failure, if s(x;0) < T,
success, if s(x;0) > 7.

g(x; 0, 7-) — {

l No
Return prediction



Vision Language Models connect images and text
through contrastive training objectives

@OpenAI i &8

cPpet LAS Text

CLIP aussie pup —> Erncader i l l l

T, il 15 TN
—» I ll I, | I1'TH ll'T3 - Ty
—» | | Tl lz'Tz 12'T3 IZ'TI\'

Image '

» | [T [>T [T [T
Encoder 4 Al N
—» II\ lN'TI lN T IN T l\l T\J

from Redford et al., 2021



With the use of VLMs, our hope is to specify and
capture meaningful attributes relevant to a given task

L~ ptf (37)

Prompt: List 20 distinct two-word

matching phrases that uniquely describe the
p (y ‘ z) .’\ visual characteristics of

{class_name}.

Task Model %

p(y|z)

Map from task

features into CLIP LARGE
feature space AGGREGATE LANGUAGE
Cosine Similarity MODEL

e 3
> el
A [
Vision-Language Model 7 .
L {5 Yy HHHHJ Response: long neck, yellow eyes,
Attribute-augmented broad wingspan...



A simple detector for failure under subpopulation shifts

C
M . failure, if s(x;0) < T,
soreement | — 2Py =clx)logply = clz) ——> G(x;0,7) = { =0

p(y|x) ”\ =

success, if s(x;0) > 7.

p (y ‘ .’L') PRIME: Leveraging Vision-Language Priors

for Improved Model Failure Detection and

Explanation
Explain disagreement Under Review, 2024
via attribute ablation R. Subramanyam, V. Narayanaswamy, K.
Thopalli, J. J. Thiagarajan
T — |
B o o o .
Cosine Similarity
4 {111 HH ) Ablate attributes to improve
kJk=1 _T'()-
HH agreement between task TEXTTO Task Model

: model and prior-induced IMAGE
{tg }5—1 HHHH model GENERATION

L%

Z
N




PRIME improves upon existing measures in predicting
failure under subpopulation shifts

N=TN+TP+ FN+ FP
TP . EN 1 Dataset Method Dataset Method
S =

N

P=—x MSP 0242 MSP 0.363
TP/N — § x P
JPS1_9)(1_ D) =

Waterbirds CelebA

.............................................................................................................................................................................................




And can even estimate failure under covariate shifts

Train  Test Improvement

Train  Test Improvement

Photo +0.31
| Art +0.2
Cartoon | e —
| Cartoon +0.29
Sketch +0.32

Train  Test Improvement Train  Test Improvement

Photo +0.2
Art +0.18
Sketch
| Cartoon +0.31
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Model failure can be caused by many factors! Handcrafting
detectors can be challenging in practice!

Towards general purpose failure detectors

-==True Function — Mean Estimate ] . ) ]
30— © Training Samples Deviation that can identify all risk regimes
20 - » | high error and
46; 104 low erroWhigh uncertainty
o low uncertainty . o
S ol e T Uncertainties are necessary but not
'. ' high error but sufficient (e.g., cannot detect label
—10- | /,/' low uncertainty . .
, , . , , noise) —> Need to take into account
0 1 2 3 4 5 . .
Input conformity to the data manifold

Are prediction uncertainties all

) : :
you need Assume no access to calibration data

from extrapolation regimes



Relative representations: A new principle for single-
model uncertainty characterization in deep neural networks

1 _
Kyix, = hNTK(XiTXj) = %XI-TXJ'(TF — COS 1(x,-ij)

NTK of unperturbed data

Kixi—x—0) = Kxig — i

NTK perturbation in terms of ¢

Neural tangent kernel (NTK) induced by
deep neural networks is not shift-invariant!

Idea: Why not do stochastic centering to

Estimating Epistemic Uncertainties in DNNs

explore different hypotheses?



In practice, we just transtorm the prediction task into the
joint distribution of (anchors, residuals)

0* — a,]_'g min L(f(mca 9)? y)

0 A-UQ uses “anchor marginalization” to enable efficient &

-----

4 ' \ . . . . . . . . .
where z,. = (C, r — C) for ¢ ~« P( C) : effective sequential optimization even in higher dimensions
\ w— GP e MCD  we——= BNN DEns s Qurs
anchor distribution 0t mum
. dim=3
”
5 -2
S
fa{er,x —ei}p) =+ = fa{cr, x — ck})
2~
: L _g.
enforce consistency 2
@ ~6
. /—'
Single Model Uncertainty Estimation Accurate and Scalable Estimation of -84 ' Y , .
via Stochastic Data Centering Epistemic Uncertainty for GNNs 10 15 Sazrgple a4 ;3 ot 30 33
NeurIPS 2022 ICLR 2024
J.J. Thiagarajan, V. Narayanaswamy, R. P. Trivedi, M. Heimann, R. Anirudh, D.
Anirudh, P. T. Bremer Koutra, J. J. Thiagarajan

L




Using relative representations, we define a new notion of

manifold conformity
test sample random train sample
Flexibility ot relative f9 ([C’ Lt — C]) fe([xt’ I xt])
representations
Forward Anchoring Reverse Anchoring

Difficulty in recovering the target for a random training sample using the test sample as the
anchor is a measure of non-conformity

PAGER: Accurate Failure Characterization in

SCOI‘e(C) . ||y — f@([xt, C — xt]) H]_ Deep Neural Networks

Under Review, 2024
J.J. Thiagarajan, V. Narayanaswamy, P. Trivedi,

. . . R. Anirudh
It is not sufficient for the test sample to be a meaningful -

anchor, it must also recover the true y accurately




HIGH

Using both uncertainty and non-conformity, we can
characterize risk regimes without post-hoc calibration

-=True Function —— Mean Estimate
PREDICTED RISK REGIMES — O Training Samples Deviation

D/
Incongruous

ID (Model will generalize)

PAGER produces state-of-the-art failure detection performance across both regression and
classification models under covariate and label shifts

P(xt € Dyyryin) > 0 M LowRisk
LOW MODERATE HIGH (Xt € Dirain)
| {Proposed Approach
EPISTEMIC UNCERTAINTY P(‘({ c X) ~ () .
O0S '
P(xt € Dtrain) =0 |
P € X)=0 o 1 2 3 4 5
P<Xt S Dt/ra,'zfn) =0 Input



Back to this — Al systems that are not only performant, but
also robust, resilient and trustworthy

T S StyleGANSs, diffusion models / ; §
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My Awesome
Collaborators!
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B jjthiagarajan@gmail.com

THANK You!!

‘ https://jjthiagarajan.com
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