



# On Estimating Link Prediction Uncertainty using Stochastic Centering



Puja Trivedi



**Danai Koutra** 



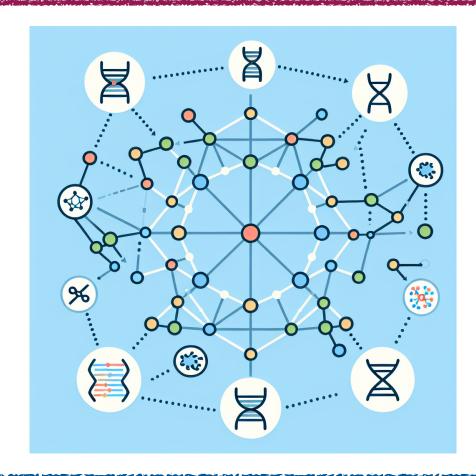
Jay Thiagarajan

### Link Prediction

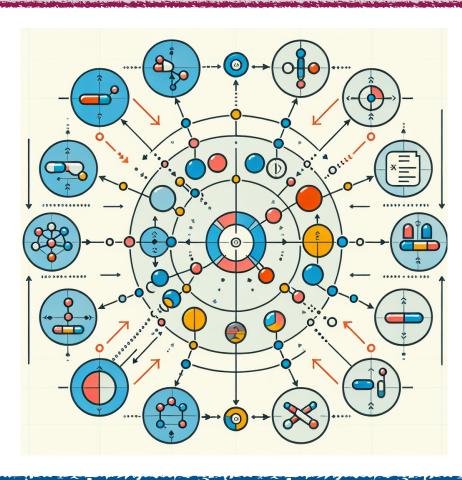
• Graph Neural Networks (GNNs) are used for link prediction in high impact tasks.



**Product Recommendation** 



**Gene-Gene Interaction** 



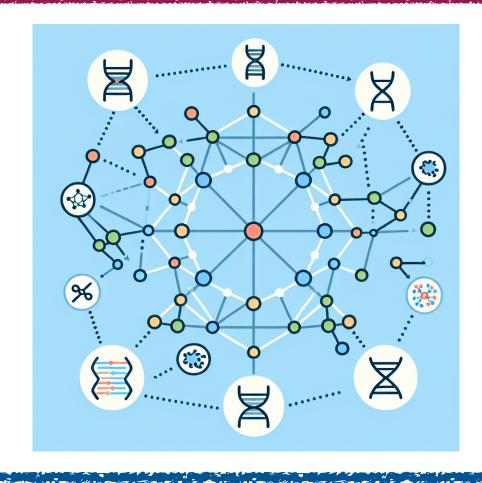
**Drug-Drug Interaction** 

### Link Prediction

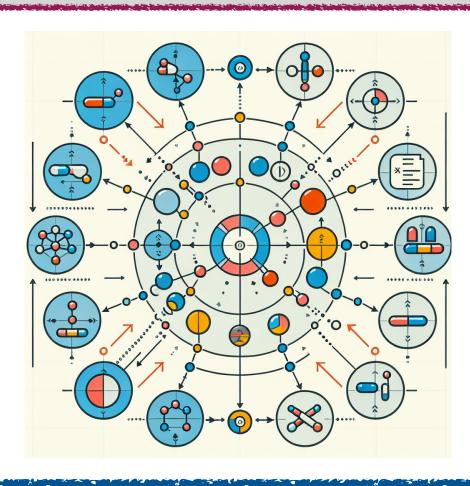
Graph Neural Networks (GNNs) are used for link prediction in high impact tasks.



**Product Recommendation** 



**Gene-Gene Interaction** 



**Drug-Drug Interaction** 

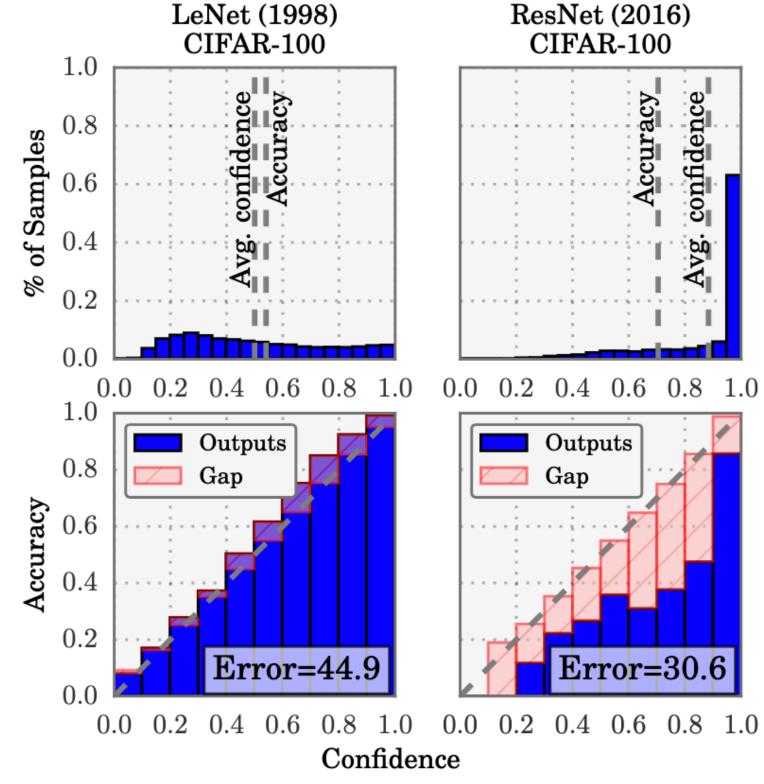
- These predictions are used to invoke expensive or time-consuming actions.
- Understanding prediction confidence is important for making informed decisions.

### Calibration for Trust Worthy Predictions

• **Calibration** is the process of adjusting a model's **output probabilities** to ensure that they accurately reflect the **true likelihood** associated with a specific prediction.

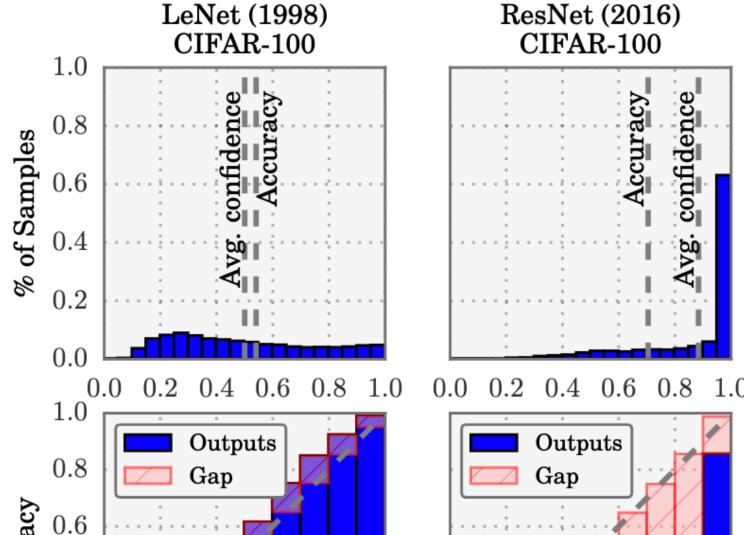
LeNet (1998) ResNet (2016)

$$\mathop{\mathbb{E}}_{\hat{P}}\left[\left|\mathbb{P}\left(\hat{Y} = Y \mid \hat{P} = p\right) - p\right|\right]$$

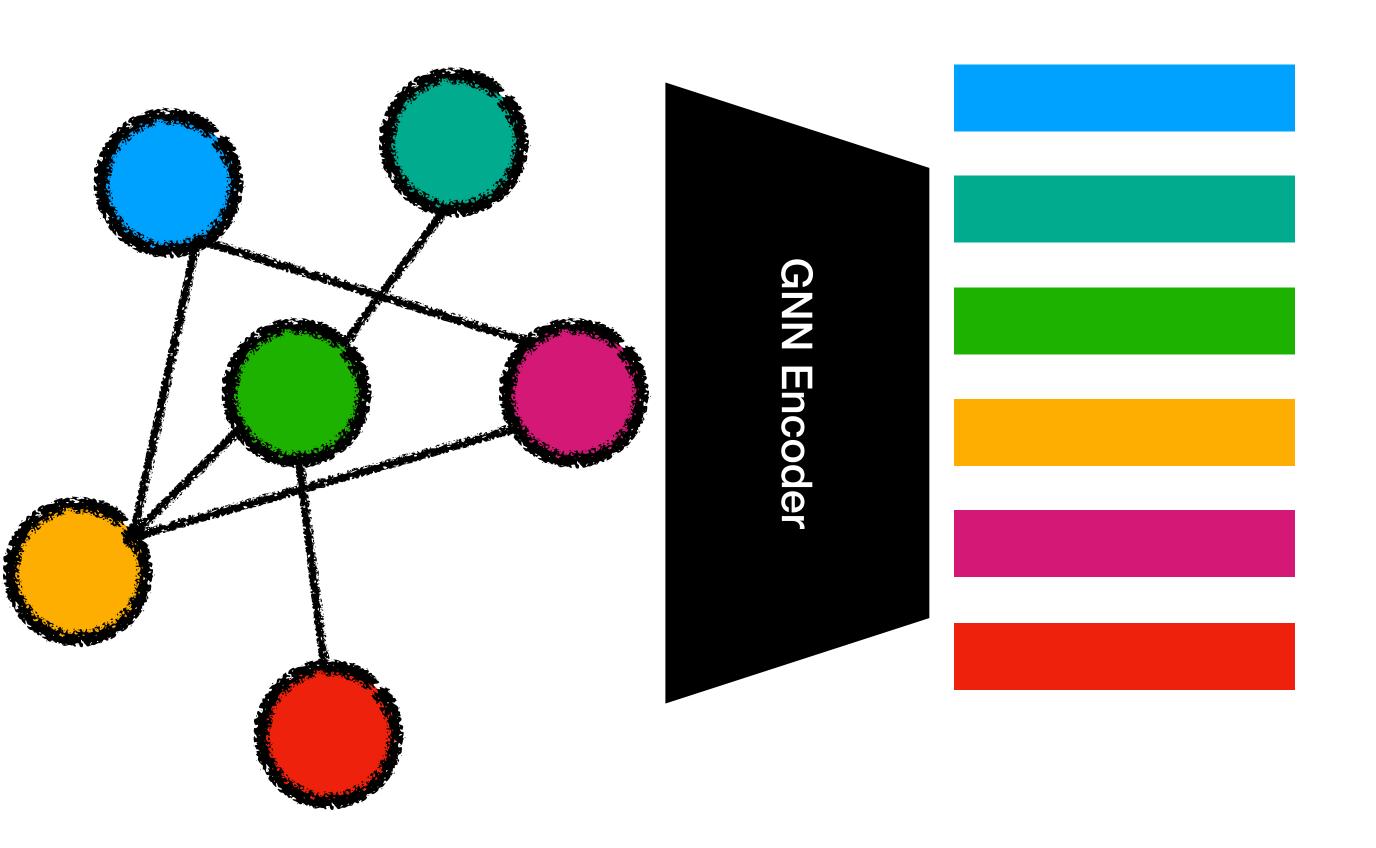


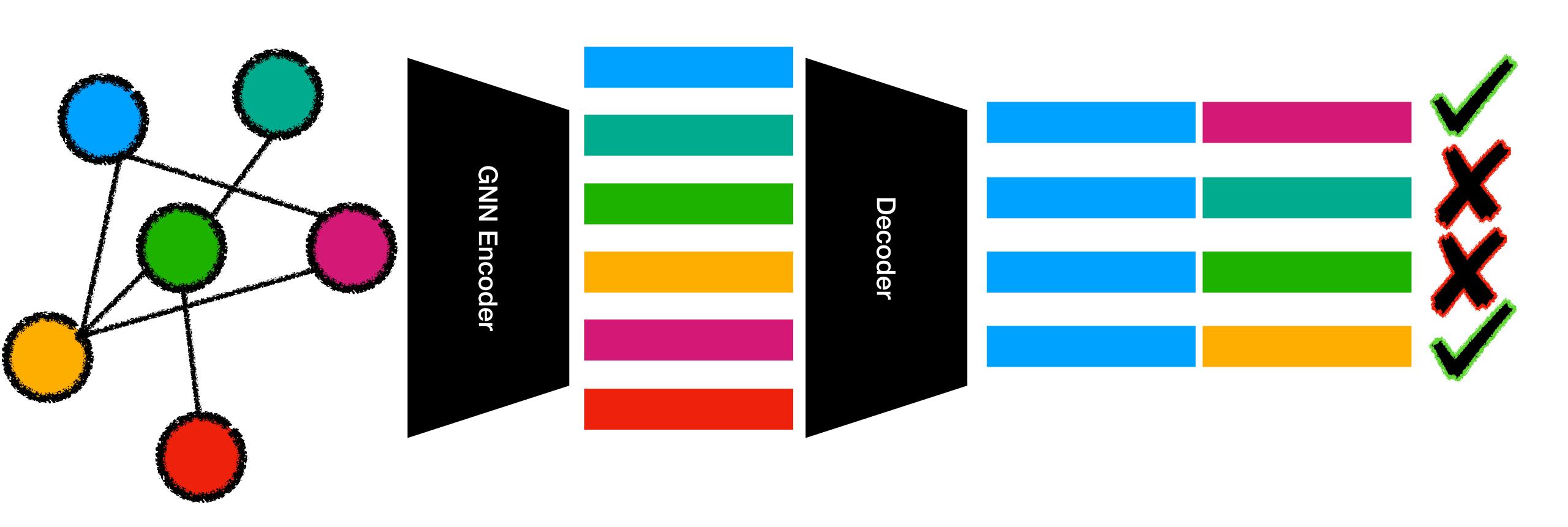
### Calibration for Trust Worthy Predictions

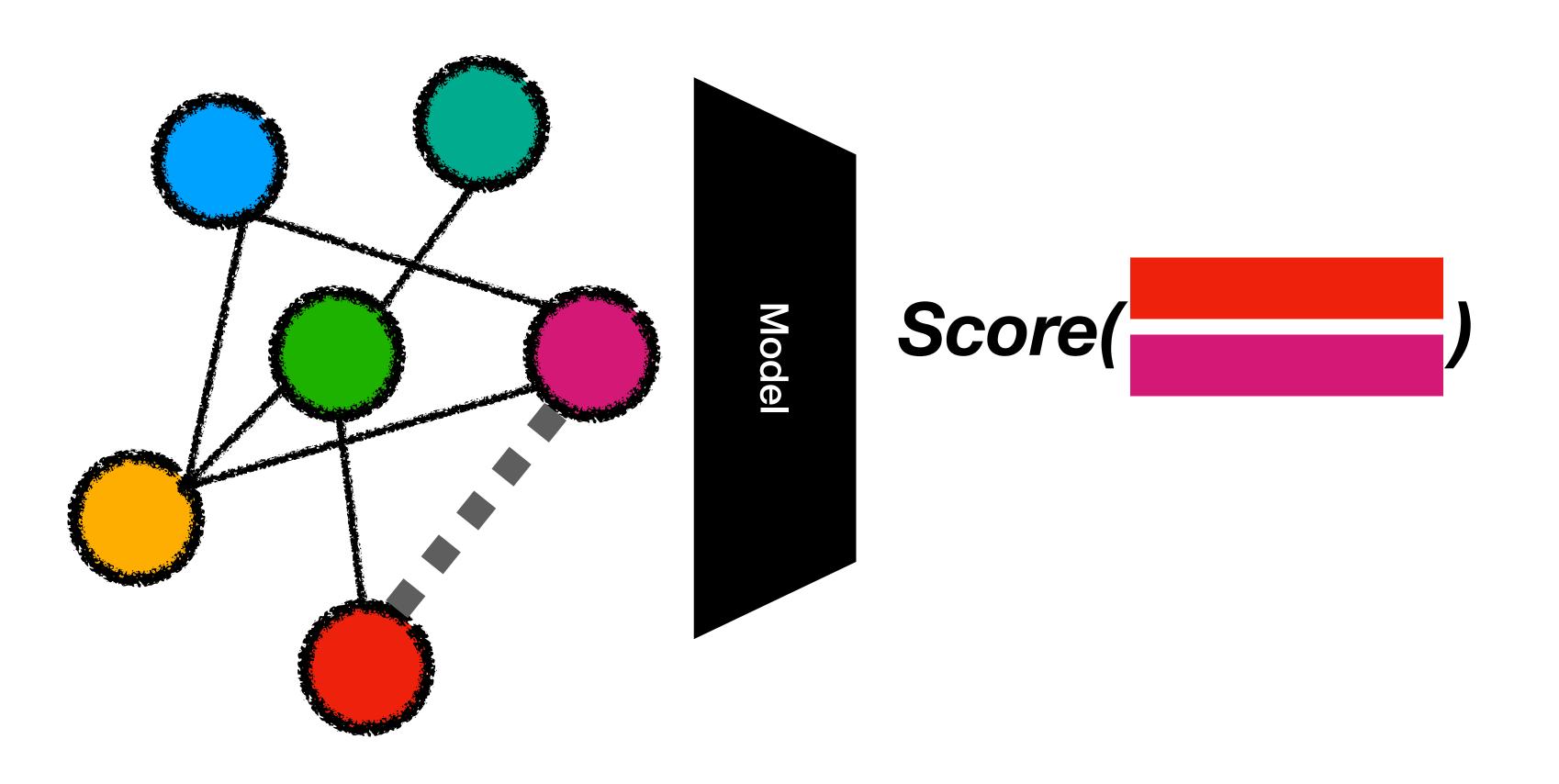
$$\mathbb{E}_{\hat{P}}\left[\left|\mathbb{P}\left(\hat{Y} = Y \mid \hat{P} = p\right) - p\right|\right]$$

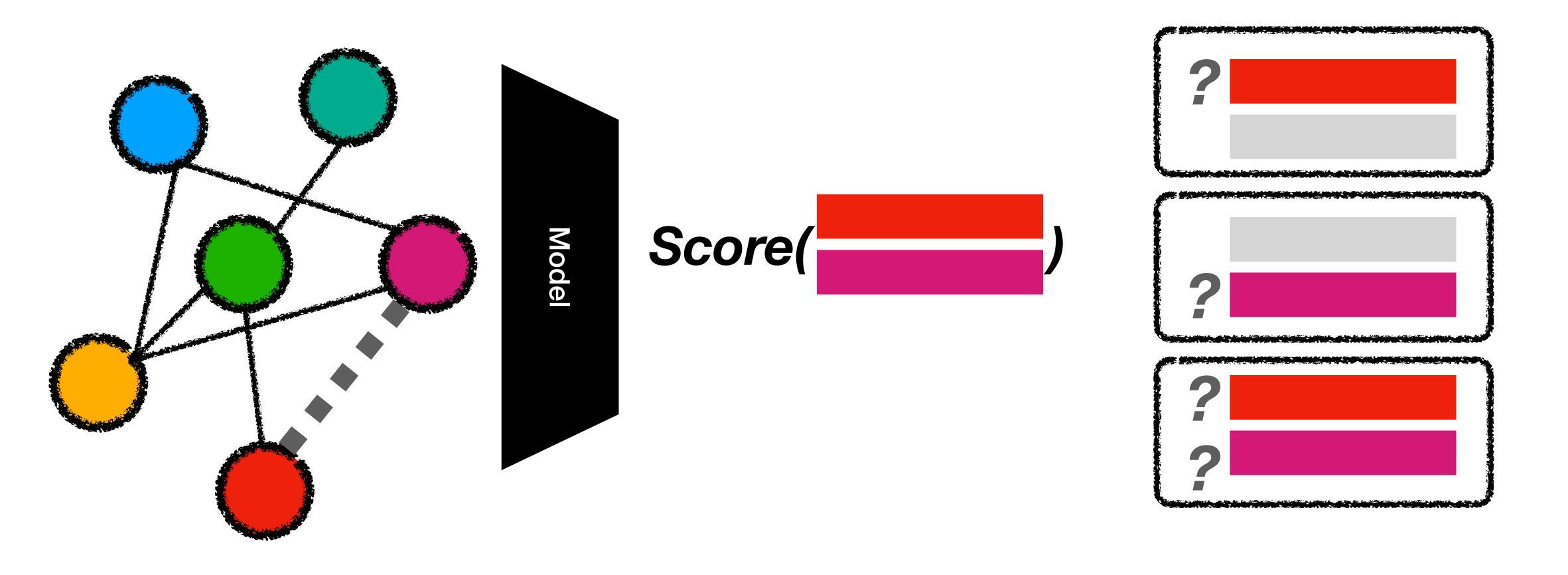


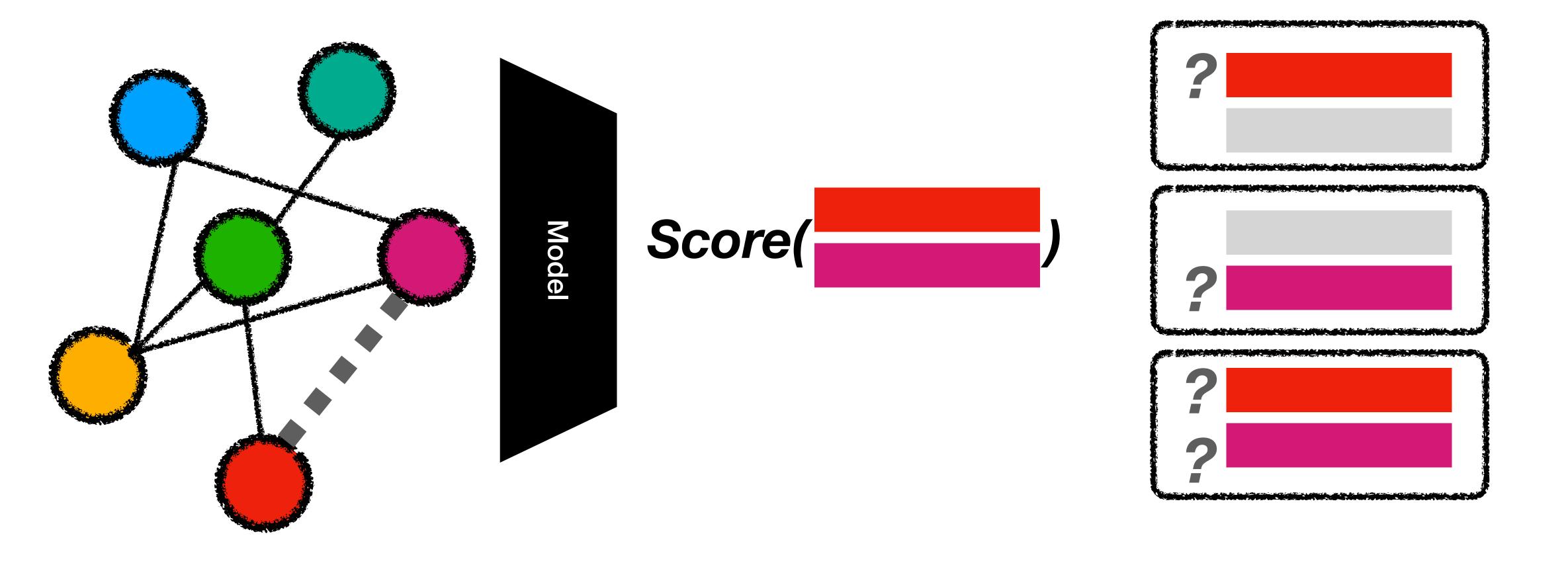
However, calibration for link prediction remains understudied!











- Model's uncertainty in its prediction is a function of its node-level uncertainties.
- Existing calibration methods do not take individual node's into account.

### Our Contributions

1. Extending Stochastic Centering to Edge-Level Uncertainty

2. Creating Meaningful Node-level uncertainties

3. Experimental Evaluation of Edge-ΔUQ

### Our Contributions

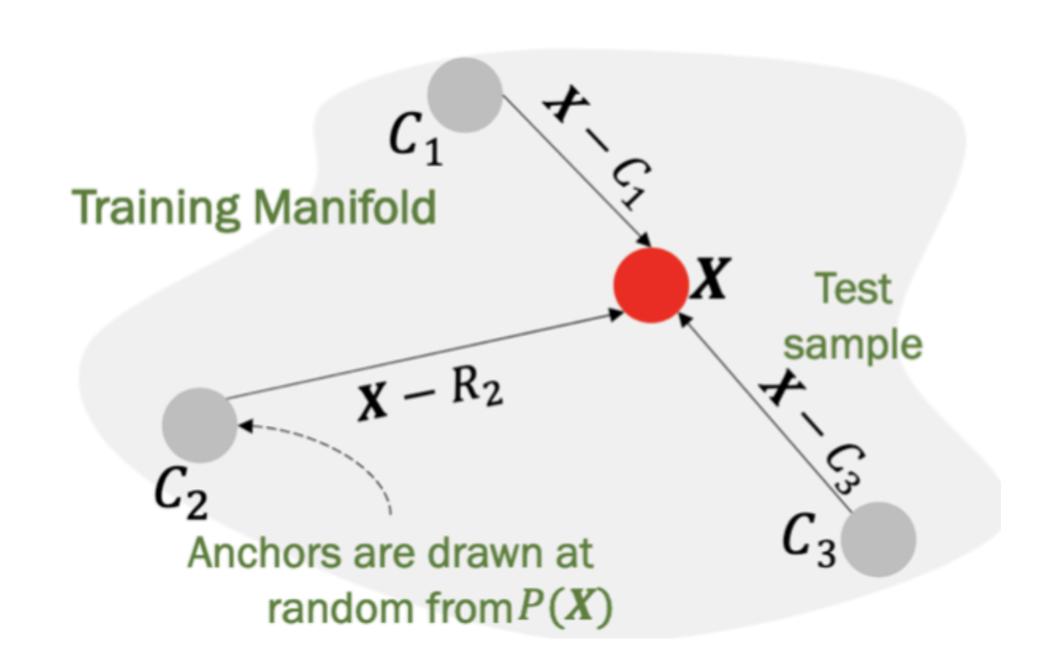
1. Extending Stochastic Centering to Edge-Level Uncertainty

2. Creating Meaningful Node-level uncertainties.

3. Experimental Evaluation of Edge-ΔUQ

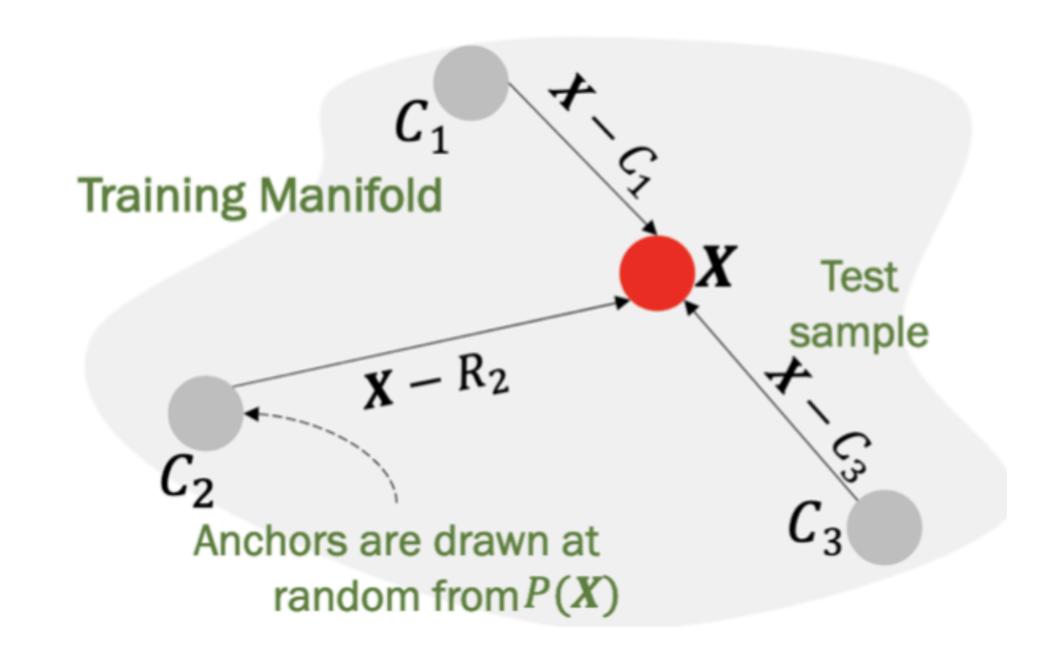
# What is Stochastic Centering (AUQ)?

• Stochastic Centering uses *anchoring* to simulate the *behavior of an ensemble* using only a *single trained model*.



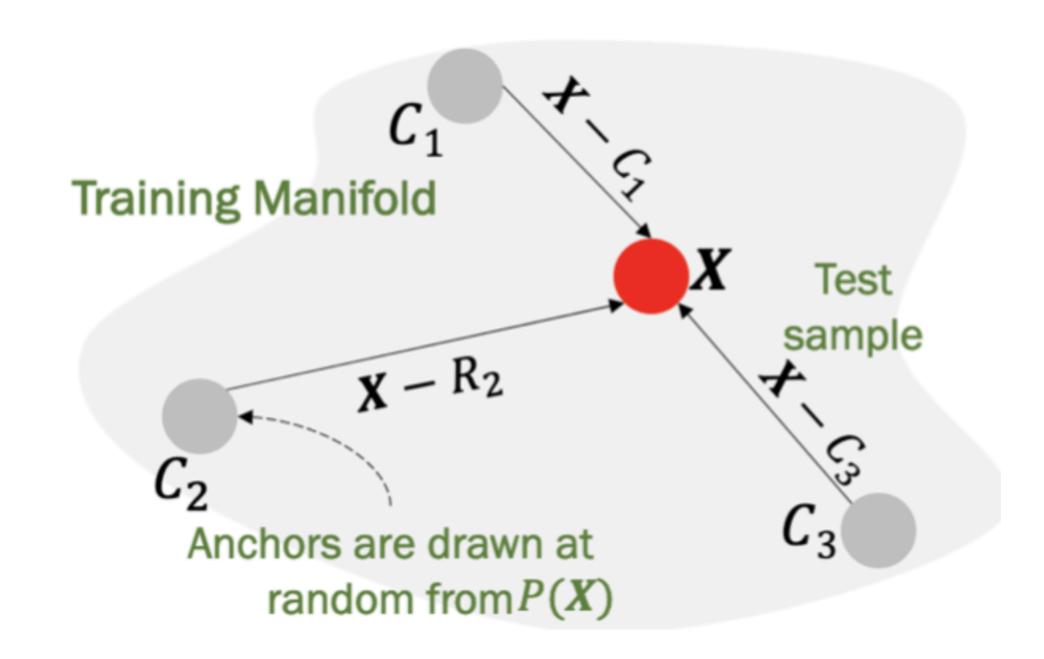
# What is Stochastic Centering (AUQ)?

- Stochastic Centering uses *anchoring* to simulate the *behavior of an ensemble* using only a *single trained model*.
- Anchoring creates a *relative representation* for an input sample *x* in terms of a random anchor *c*: [x c, c].



## What is Stochastic Centering(\DUQ)?

- Stochastic Centering uses *anchoring* to simulate the *behavior of an ensemble* using only a *single trained model*.
- Anchoring creates a *relative representation* for an input sample *x* in terms of a random anchor *c*: [x c, c].
- During training, the anchor is randomized emulates the process of sampling different solutions from the hypothesis space.

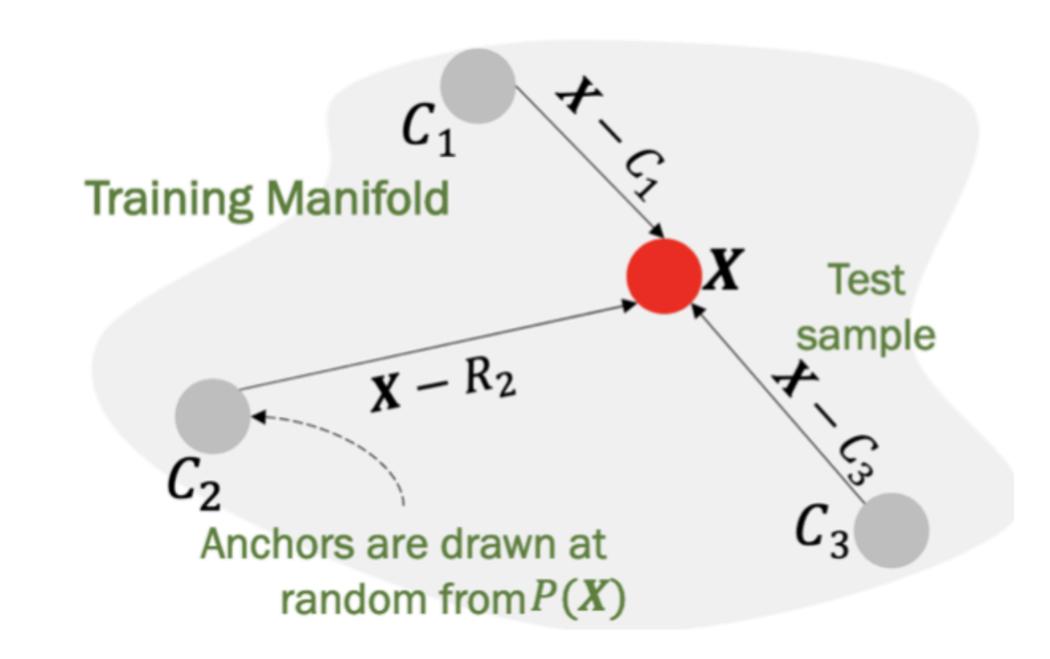


## What is Stochastic Centering(\( \Delta \text{UQ} \)?

 Like a Deep Ensemble, the variance over different predictions is indicative of the uncertainty.

$$\boldsymbol{\mu}(y|\mathbf{x}) = \frac{1}{K} \sum_{k=1}^{K} f_{\theta}([\mathbf{x} - \mathbf{c}_k, \mathbf{c}_k])$$

Uncertainty 
$$\sigma(y|\mathbf{x}) = \sqrt{\frac{1}{K-1}\sum_{k=1}^K (f_{\theta}([\mathbf{x}-\mathbf{c}_k,\mathbf{c}_k]) - \boldsymbol{\mu})^2}$$



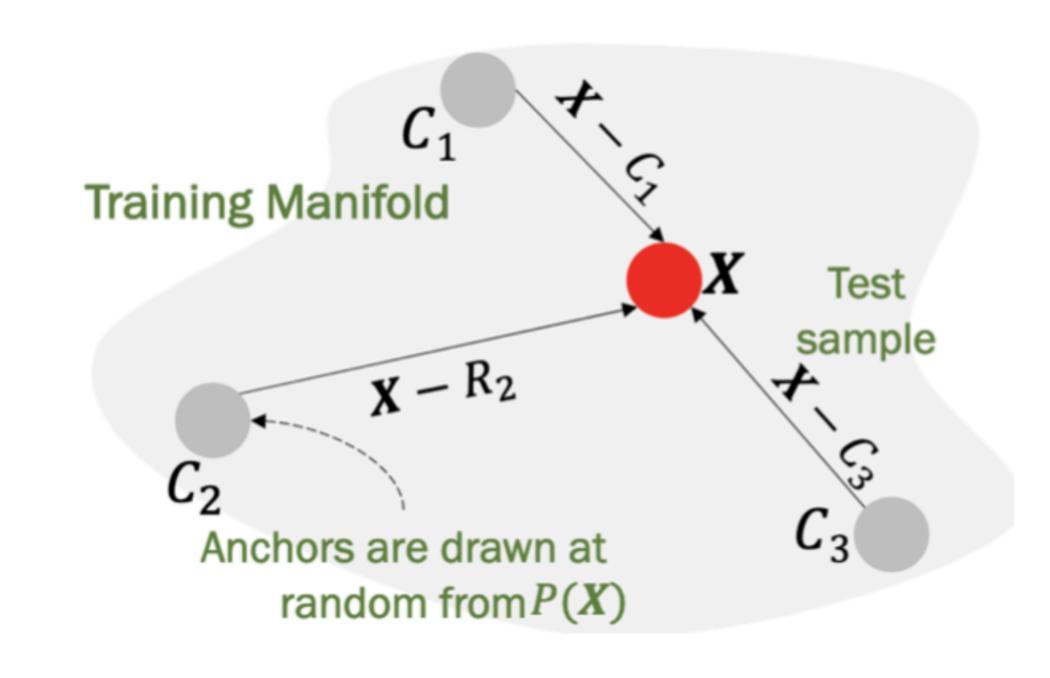
# What is Stochastic Centering(ΔUQ)?

 Like a Deep Ensemble, the variance over different predictions is indicative of the uncertainty.

$$\boldsymbol{\mu}(y|\mathbf{x}) = \frac{1}{K} \sum_{k=1}^{K} f_{\theta}([\mathbf{x} - \mathbf{c}_k, \mathbf{c}_k])$$

Uncertainty 
$$\sigma(y|\mathbf{x}) = \sqrt{\frac{1}{2}}$$

Uncertainty 
$$\sigma(y|\mathbf{x}) = \sqrt{\frac{1}{K-1}\sum_{k=1}^K (f_{\theta}([\mathbf{x}-\mathbf{c}_k,\mathbf{c}_k]) - \boldsymbol{\mu})^2}$$



- Stochastic Centering has *state of the art performance* for calibration and OOD detection on vision, graph classification and node classification tasks.
- We adapt it to provide node level uncertainty that can improve link prediction performance.

## $E-\Delta UQ(v1)$

# Decoder $[(\mathbf{X}^{l+1} \cdot \mathbf{X}^{l+1}^T) - C, C]$ $\mathbf{X}^{l+1} \quad C = \text{Shuffle}(\mathbf{X}^{l+1})$ $Enc_{1...l}$

- Perform anchoring after the encoder over the *node* representations.
- Anchors are sampled by shuffling the node representations.

Decoder<sub>dot</sub>: 
$$[(\mathbf{x}_i - \mathbf{c}) * (\mathbf{x}_j - \mathbf{c}), \mathbf{c}]$$
  
Decoder<sub>concat</sub>:  $[(\mathbf{x}_i - \mathbf{c} | | \mathbf{x}_j - \mathbf{c}), \mathbf{c}]$ 

• The encoder is *deterministic*, and the decoder is *stochastic*.

## $E-\Delta UQ(v1)$

# V1 Decoder $[(\mathbf{X}^{l+1} \cdot \mathbf{X}^{l+1}) - C, C]$ $C = \text{Shuffle}(\mathbf{X}^{l+1})$ $Enc_{1...l}$

- Perform anchoring after the encoder over the *node* representations.
- Anchors are sampled by shuffling the node representations.

Decoder<sub>dot</sub>: 
$$[(\mathbf{x}_i - \mathbf{c}) * (\mathbf{x}_j - \mathbf{c}), \mathbf{c}]$$
  
Decoder<sub>concat</sub>:  $[(\mathbf{x}_i - \mathbf{c} | | \mathbf{x}_j - \mathbf{c}), \mathbf{c}]$ 

- The encoder is *deterministic*, and the decoder is *stochastic*.
- While this is a viable extension of  $\Delta UQ$ , it does not directly use the node uncertainty.

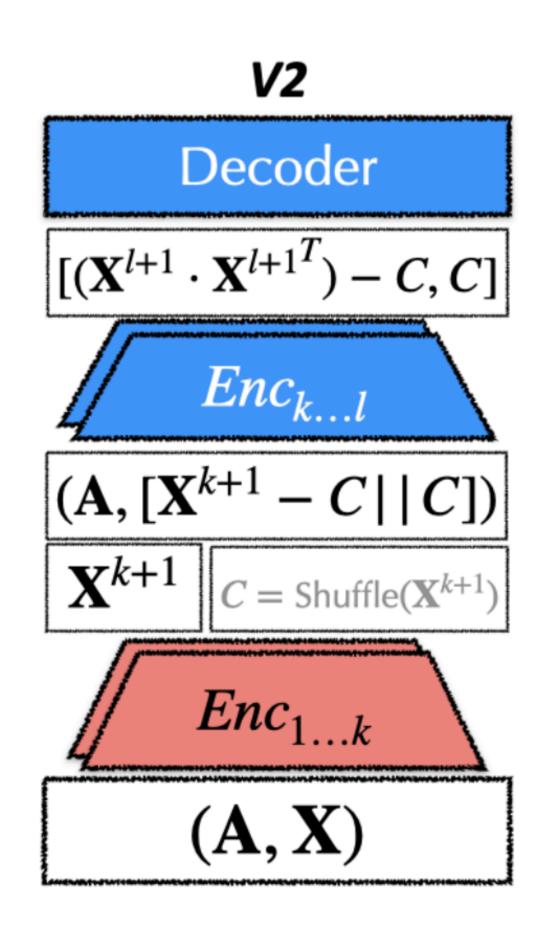
### Our Contributions

1. Extending Stochastic Centering to Edge-Level Uncertainty

2. Creating Meaningful Node-level uncertainties.

3. Experimental Evaluation of Edge-ΔUQ

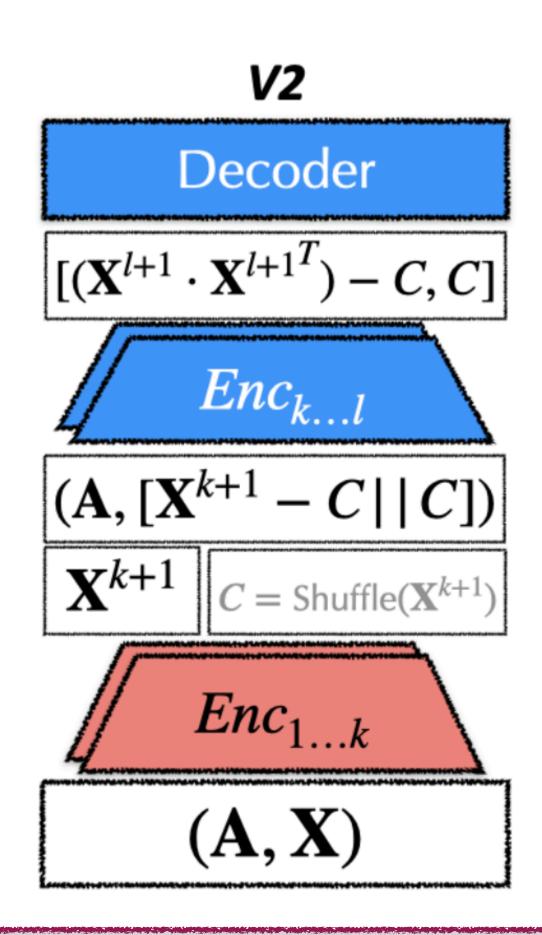
### E-ΔUQ (v2): Partially Stochastic Encoder



- Sampling a diverse set of hypotheses is important for ensuring useful epistemic uncertainty estimates.
- Using a stochastic encoder supports more diverse hypotheses and helps capture more node level uncertainty.

$$\begin{split} \mathbf{X}^{r+1} &= \texttt{Encoder}^{1...r}(\mathbf{X}, \mathbf{A}) \\ \mathbf{X}^{\ell+1} &= \texttt{Encoder}^{r+1...\ell} \left( [\mathbf{X}^{r+1} - \mathbf{C}, \mathbf{C}], \mathbf{A} \right) \\ \hat{E}_{(i,j)} &= \texttt{Decoder} \left( \mathbf{X}_i^{\ell+1}, \mathbf{X}_j^{\ell+1} \right) \end{split}$$

### E-ΔUQ (v2): Partially Stochastic Encoder



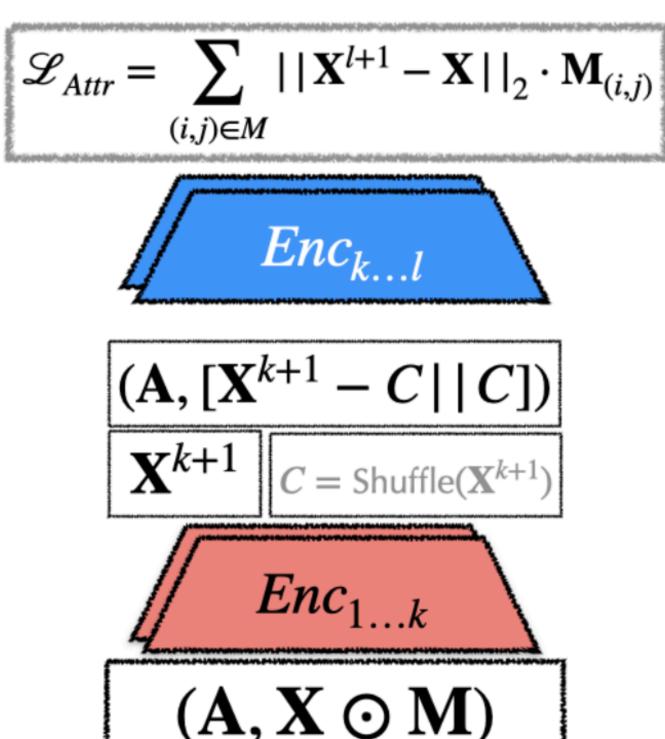
- Sampling a diverse set of hypotheses is important for ensuring useful epistemic uncertainty estimates.
- Using a stochastic encoder supports more diverse hypotheses and helps capture more node level uncertainty.

$$\begin{split} \mathbf{X}^{r+1} &= \texttt{Encoder}^{1...r}(\mathbf{X}, \mathbf{A}) \\ \mathbf{X}^{\ell+1} &= \texttt{Encoder}^{r+1...\ell} \left( [\mathbf{X}^{r+1} - \mathbf{C}, \mathbf{C}], \mathbf{A} \right) \\ \hat{E}_{(i,j)} &= \texttt{Decoder} \left( \mathbf{X}_i^{\ell+1}, \mathbf{X}_j^{\ell+1} \right) \end{split}$$

While we know have more diverse node level uncertainty, there is no apriori guarantee that these are calibrated!

# E-ΔUQ (v3): Partially Stochastic Encoder + Node Level Pretraining

### **Attribute Masking**

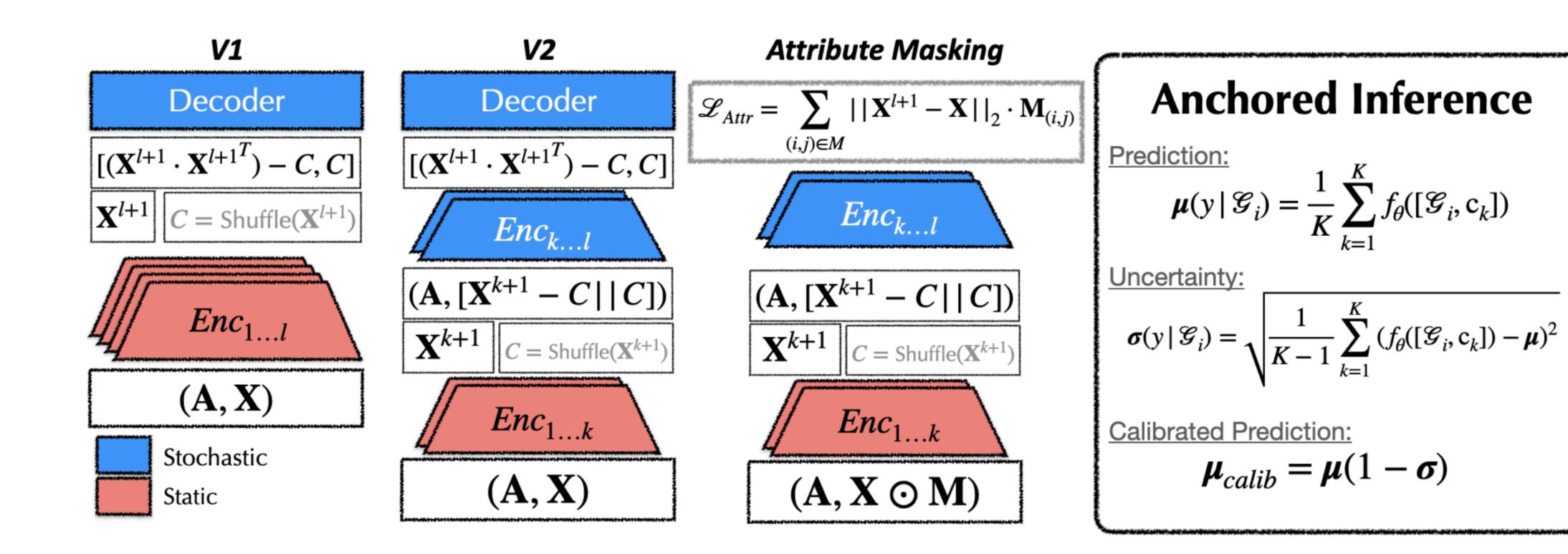


• To improve node level uncertainty, we use an auxiliary feature reconstruction task.

$$egin{aligned} \mathbf{X}^{r+1} &= \mathtt{Encoder}^{1...r}(\mathbf{X} \odot \mathbf{M},, \mathbf{A}) \ \mathbf{X}^{\ell+1} &= \mathtt{Encoder}^{r+1...\ell}\left([\mathbf{X}^{r+1} - \mathbf{C}, \mathbf{C}], \mathbf{A}
ight) \ \mathcal{L}_{Attr} &= \sum_{(i,j) \in \mathbf{M}} ||\mathbf{X}^{\ell+1} - \mathbf{X}||_2 \cdot \mathbf{M}_{(i,j)} \end{aligned}$$

• The model is *trained end to end* with the additional task at a negligible loss.

### E-ΔUQ: Stochastic Centering for Link Prediction



### Our Contributions

1. Extending Stochastic Centering to Edge-Level Uncertainty

2. Creating Meaningful Node-level uncertainties.

3. Experimental Evaluation of Edge-ΔUQ

| Dataset  | Method                                                                    | AUPR (†) | <b>ECE</b> (↓) |
|----------|---------------------------------------------------------------------------|----------|----------------|
| Citeseer | $E-\Delta UQ (v3)$<br>$E-\Delta UQ (v2)$<br>$E-\Delta UQ (v1)$<br>Vanilla |          |                |
| Cora     | $E-\Delta UQ (v3)$<br>$E-\Delta UQ (v2)$<br>$E-\Delta UQ (v1)$<br>Vanilla |          |                |
| Pubmed   | $E-\Delta UQ (v3)$<br>$E-\Delta UQ (v2)$<br>$E-\Delta UQ (v1)$<br>Vanilla |          |                |

| Dataset  | Method             | AUPR (†)            | ECE (↓)               |
|----------|--------------------|---------------------|-----------------------|
| Citeseer | $E-\Delta UQ$ (v3) | $0.8409 \pm 0.0115$ | $0.2591 \pm 0.0178$   |
|          | $E-\Delta UQ$ (v2) | $0.8548 \pm 0.0076$ | $0.2833 \pm 0.0075$   |
|          | $E-\Delta UQ(v1)$  | $0.8070 \pm 0.0218$ | $0.3056 \pm 0.0109$   |
|          | Vanilla            | $0.8236 \pm 0.0115$ | $0.3002 \pm 0.0062$   |
| Cora     | $E-\Delta UQ$ (v3) | $0.8886 \pm 0.0042$ | $0.1554 \pm 0.0060$   |
|          | $E-\Delta UQ$ (v2) | $0.8888 \pm 0.0062$ | $0.1731\ {\pm}0.0181$ |
|          | $E-\Delta UQ(v1)$  | $0.8598 \pm 0.0207$ | $0.2640 \pm 0.0125$   |
|          | Vanilla            | $0.8936 \pm 0.0066$ | $0.3503 \pm 0.0146$   |
| Pubmed   | $E-\Delta UQ$ (v3) | $0.8775 \pm 0.0098$ | $0.1818 \pm 0.0048$   |
|          | $E-\Delta UQ$ (v2) | $0.8701 \pm 0.0016$ | $0.1538 \pm 0.0059$   |
|          | $E-\Delta UQ(v1)$  | $0.9069 \pm 0.0063$ | $0.1801 \pm 0.0117$   |
|          | Vanilla            | $0.8897 \pm 0.0091$ | $0.1980 \pm 0.0035$   |

• **Obs 1:** E-ΔUQ improves the calibration on all datasets over the vanilla model.

| Dataset  | Method             | AUPR (†)            | ECE (↓)               |
|----------|--------------------|---------------------|-----------------------|
| Citeseer | $E-\Delta UQ (v3)$ | $0.8409 \pm 0.0115$ | $0.2591 \pm 0.0178$   |
|          | $E-\Delta UQ$ (v2) | $0.8548 \pm 0.0076$ | $0.2833 \pm 0.0075$   |
|          | $E-\Delta UQ(v1)$  | $0.8070 \pm 0.0218$ | $0.3056 \pm 0.0109$   |
|          | Vanilla            | $0.8236 \pm 0.0115$ | $0.3002 \pm 0.0062$   |
| Cora     | $E-\Delta UQ$ (v3) | $0.8886 \pm 0.0042$ | $0.1554 \pm 0.0060$   |
|          | $E-\Delta UQ$ (v2) | $0.8888 \pm 0.0062$ | $0.1731\ {\pm}0.0181$ |
|          | $E-\Delta UQ(v1)$  | $0.8598 \pm 0.0207$ | $0.2640 \pm 0.0125$   |
|          | Vanilla            | $0.8936 \pm 0.0066$ | $0.3503 \pm 0.0146$   |
| Pubmed   | $E-\Delta UQ$ (v3) | $0.8775 \pm 0.0098$ | $0.1818 \pm 0.0048$   |
|          | $E-\Delta UQ$ (v2) | $0.8701 \pm 0.0016$ | $0.1538 \pm 0.0059$   |
|          | $E-\Delta UQ(v1)$  | $0.9069 \pm 0.0063$ | $0.1801 \pm 0.0117$   |
|          | Vanilla            | $0.8897 \pm 0.0091$ | $0.1980 \pm 0.0035$   |

- **Obs 1:** E-ΔUQ improves the calibration on all datasets over the vanilla model.
- Obs 2: E-ΔUQ perform comparably on *AUPR* (best 2/3).

| Dataset  | Method             | AUPR (†)            | ECE (↓)               |
|----------|--------------------|---------------------|-----------------------|
| Citeseer | $E-\Delta UQ (v3)$ | $0.8409 \pm 0.0115$ | $0.2591 \pm 0.0178$   |
|          | $E-\Delta UQ$ (v2) | $0.8548 \pm 0.0076$ | $0.2833 \pm 0.0075$   |
|          | $E-\Delta UQ(v1)$  | $0.8070 \pm 0.0218$ | $0.3056 \pm 0.0109$   |
|          | Vanilla            | $0.8236 \pm 0.0115$ | $0.3002 \pm 0.0062$   |
| Cora     | $E-\Delta UQ (v3)$ | $0.8886 \pm 0.0042$ | $0.1554 \pm 0.0060$   |
|          | $E-\Delta UQ$ (v2) | $0.8888 \pm 0.0062$ | $0.1731\ {\pm}0.0181$ |
|          | $E-\Delta UQ(v1)$  | $0.8598 \pm 0.0207$ | $0.2640 \pm 0.0125$   |
|          | Vanilla            | $0.8936 \pm 0.0066$ | $0.3503 \pm 0.0146$   |
| Pubmed   | $E-\Delta UQ$ (v3) | $0.8775 \pm 0.0098$ | $0.1818 \pm 0.0048$   |
|          | $E-\Delta UQ$ (v2) | $0.8701 \pm 0.0016$ | $0.1538 \pm 0.0059$   |
|          | $E-\Delta UQ(v1)$  | $0.9069 \pm 0.0063$ | $0.1801\ {\pm}0.0117$ |
|          | Vanilla            | $0.8897 \pm 0.0091$ | $0.1980 \pm 0.0035$   |

- **Obs 1:** E-ΔUQ improves the calibration on all datasets over the vanilla model.
- Obs 2: E-∆UQ perform comparably on *AUPR* (best 2/3).
- Obs 3: *E-∆UQ (v3)* obtains the best calibration on 2/3 datasets.

#### Contributions

 Extending Stochastic Centering to Edge-Level Uncertainty

 Creating Meaningful Node-level uncertainties

 Experimental Evaluation of Edge-ΔUQ

# Thank you!

Questions?: <u>pujat@umich.edu</u> pujacomputes.github.io