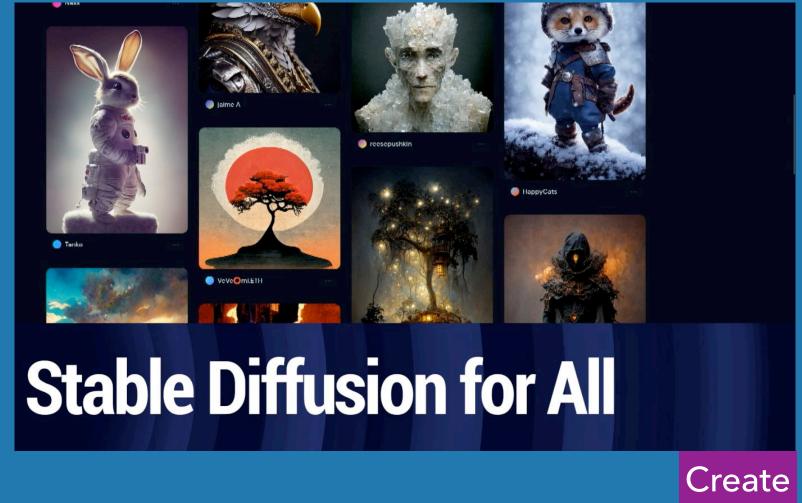
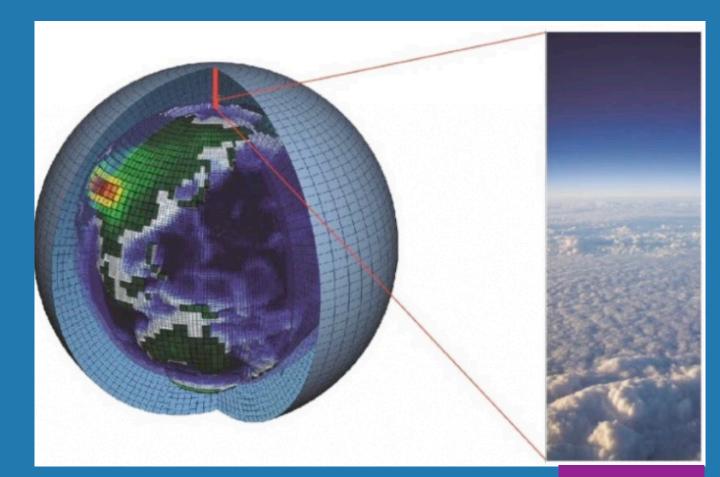
Towards Data-Efficient, Grounded and Safe Deep Models

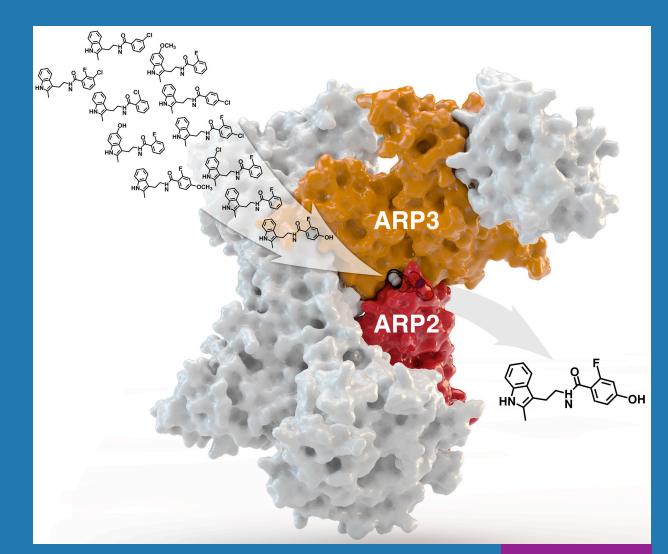
Jay Thiagarajan

Machine Intelligence Group Lawrence Livermore National Labs





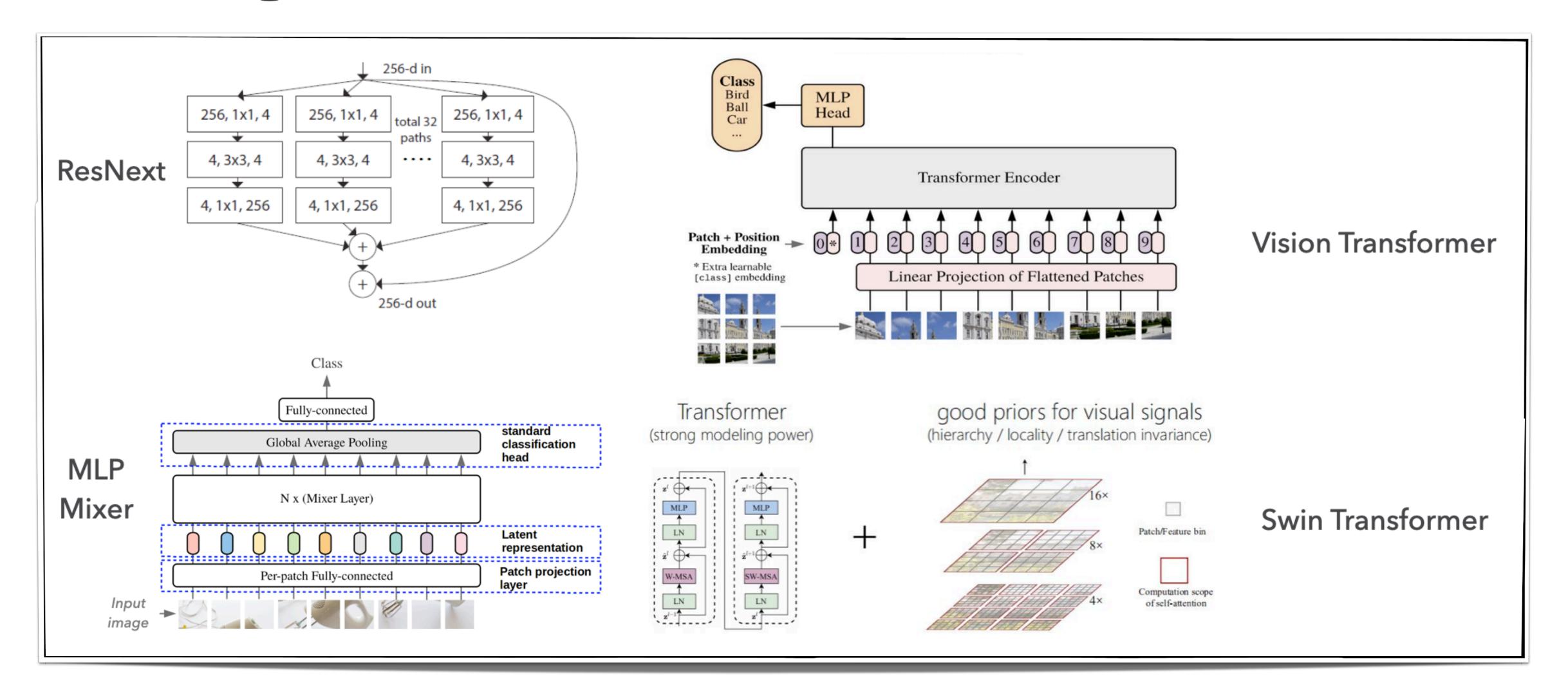
Forecast

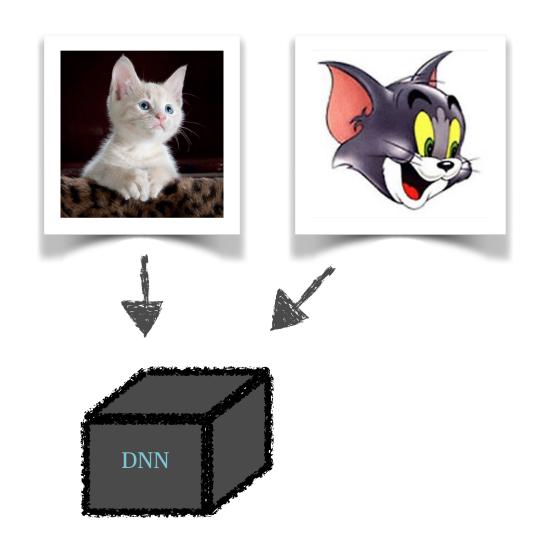


Personalize

Discover

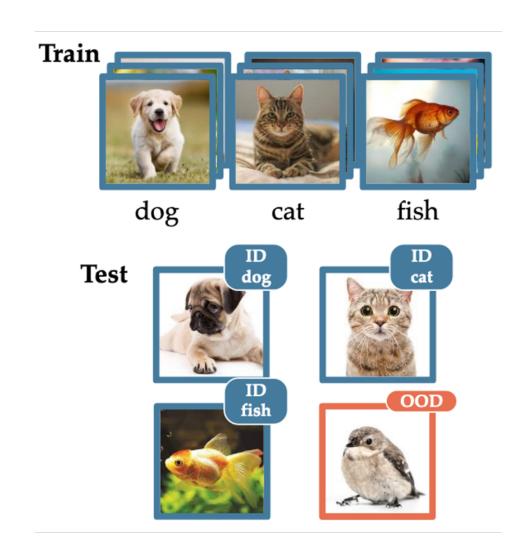
Advanced Architectures and Optimization Strategies Have Pushed the SOTA in Vision Tasks



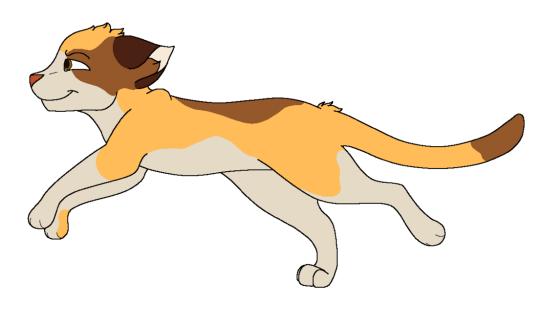


Withstand Distribution
Shifts

Resilient to Malicious Manipulations

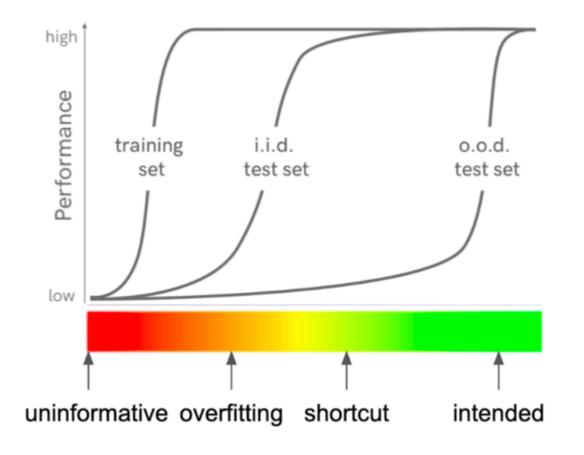


Reject Anomalous
Samples

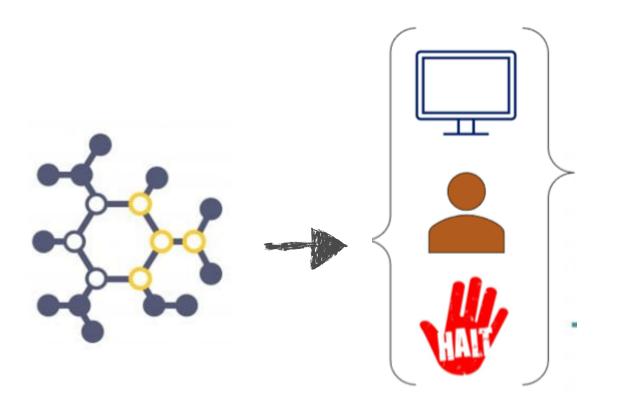


Consistency of representations across frames of a video

Adhere to our Understanding of the Underlying Process



Avoid Shortcut Decision Rules



Prescribe not just Predict

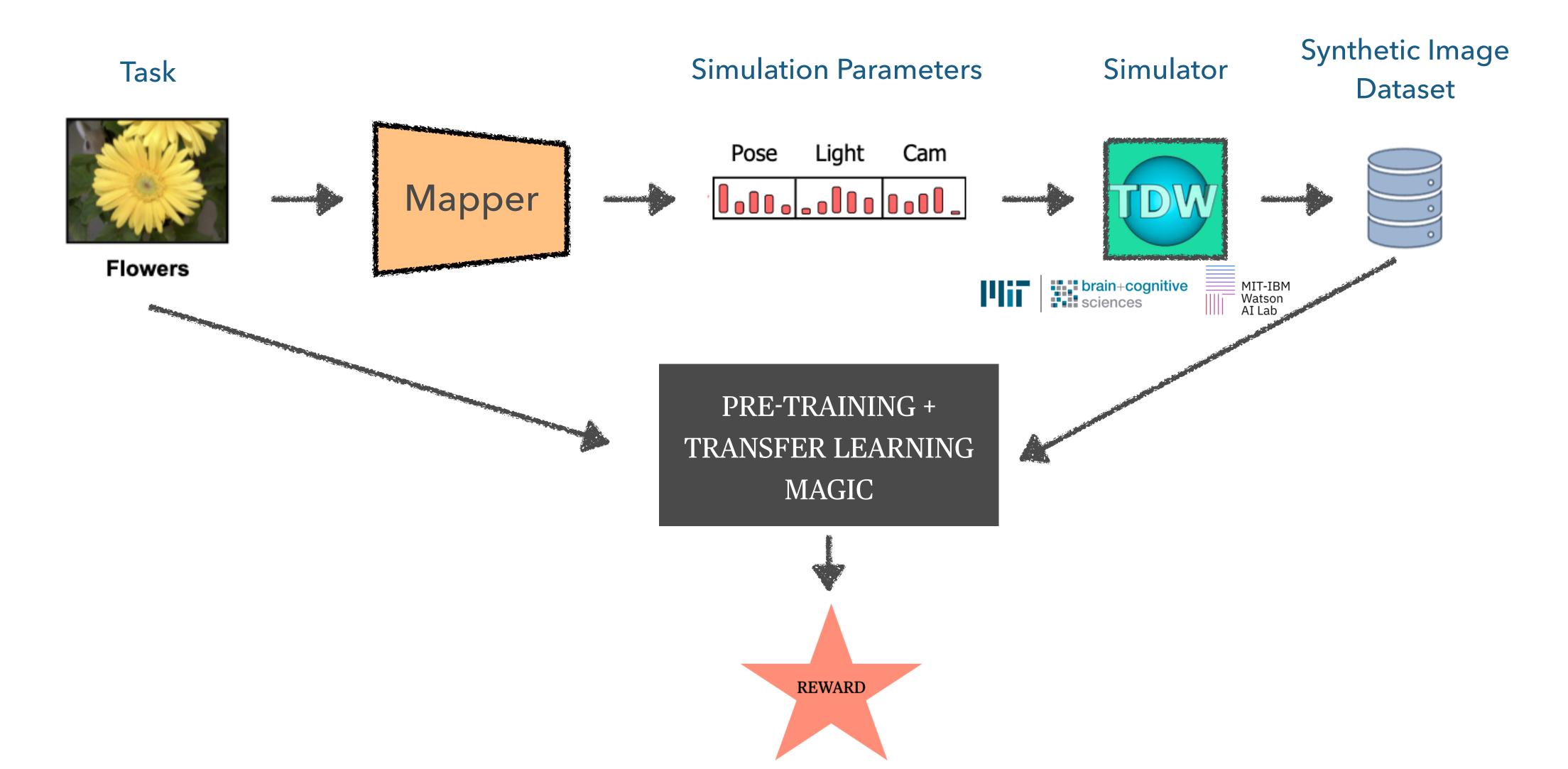
Data-Efficiency

We are Transitioning from the Era of Purely Data-Driven Learning to "Domain-Aware" Learning

Requirement Physical Models/Simulators

Level of Expert Effort

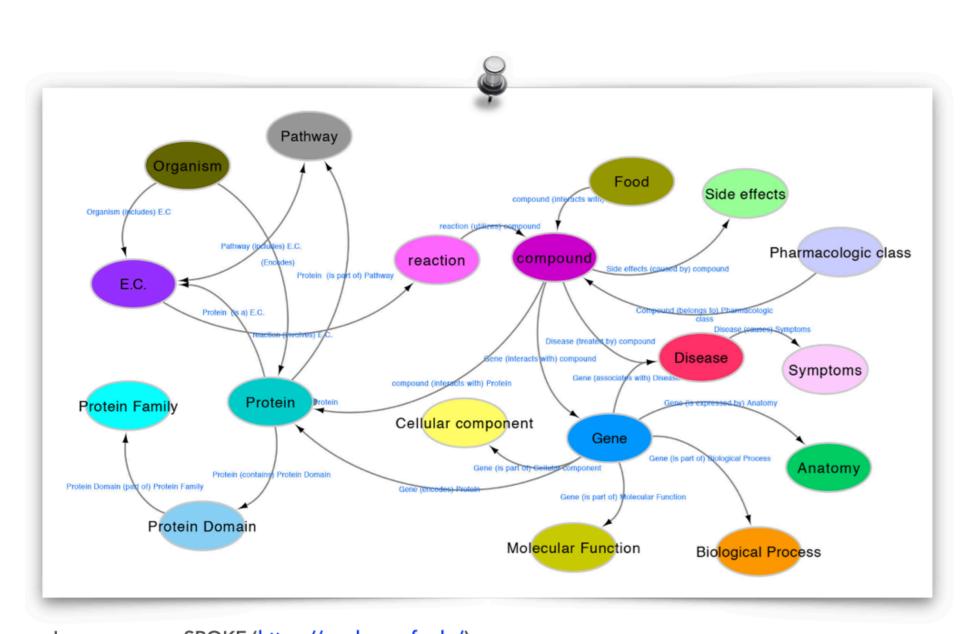
Physical Models Can Enable Effective Exploration of the Data Manifold Specific to a Given Task



We are Transitioning from the Era of Purely Data-Driven Learning to "Domain-Aware" Learning

Level of Expert Effort

Knowledge graphs provide a convenient way to specify domain knowledge without analytical descriptions



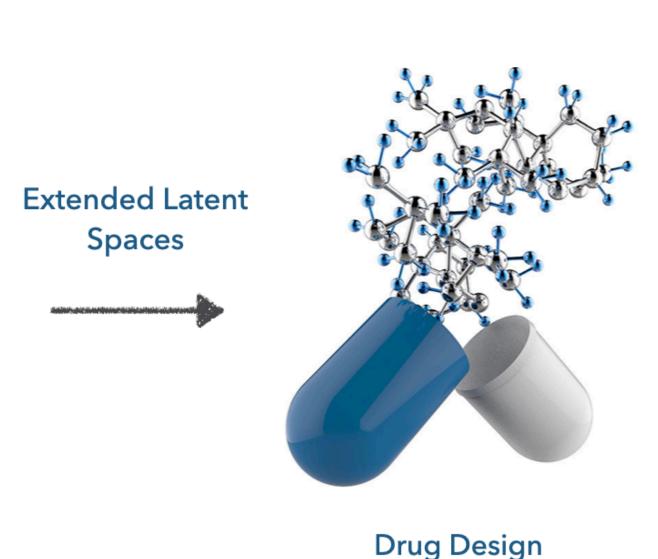
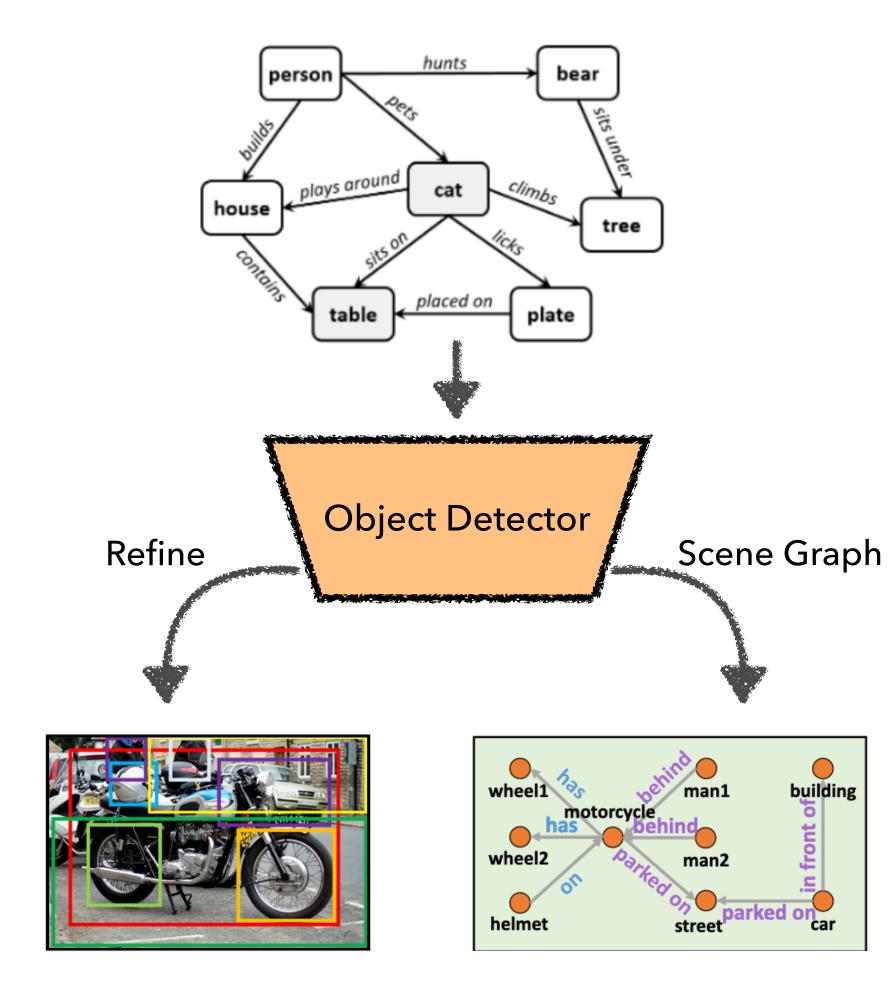
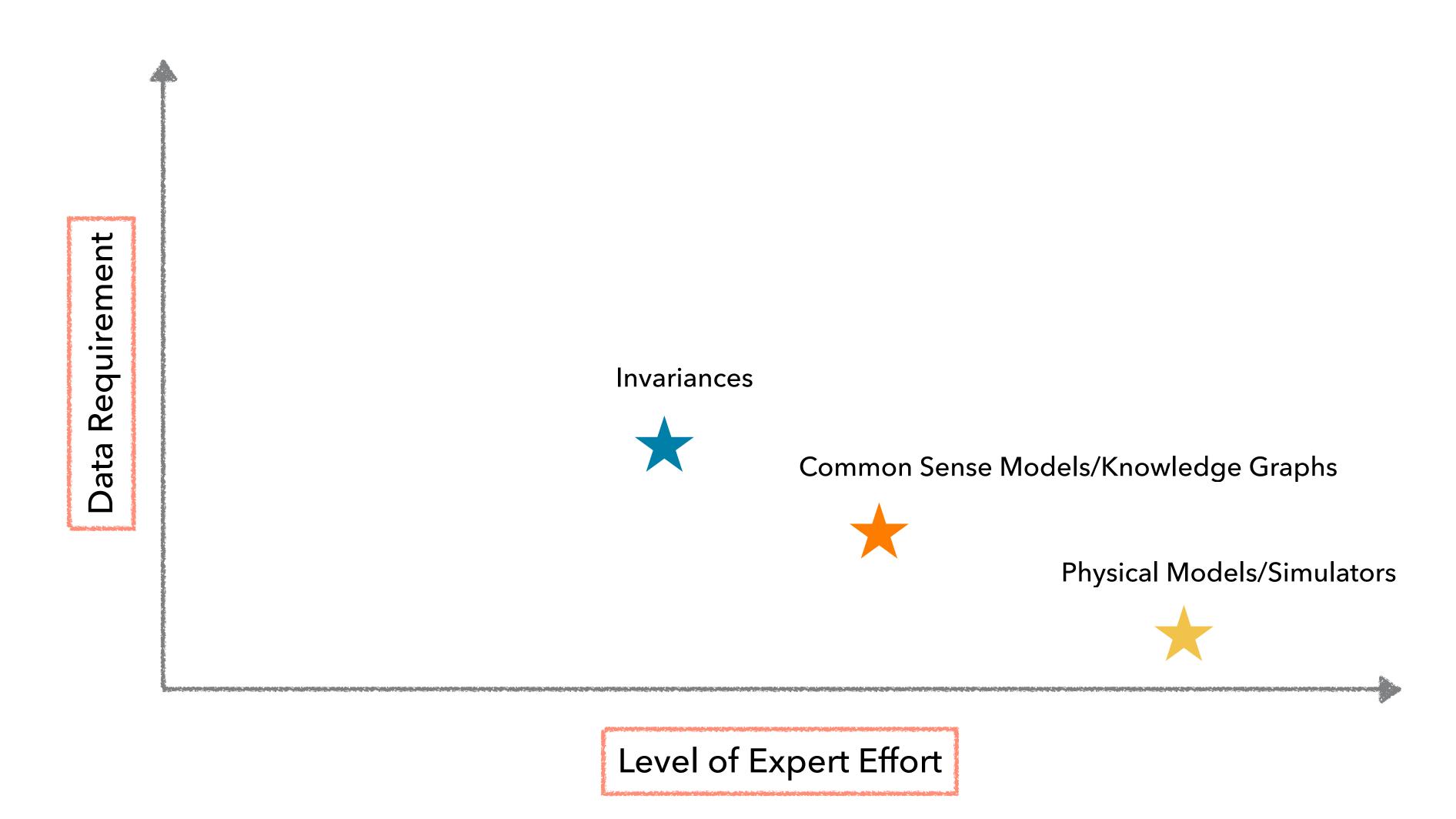


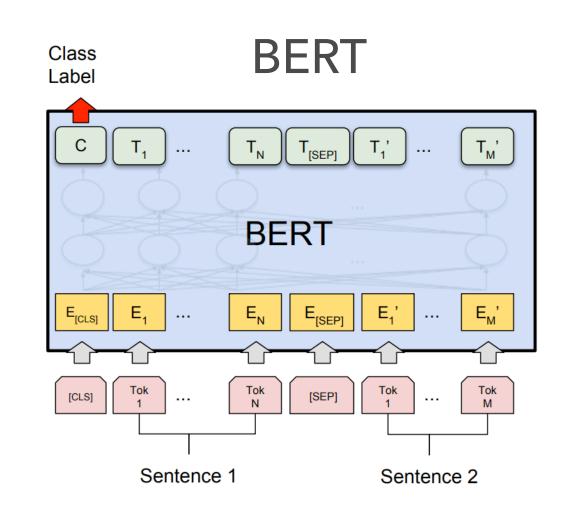
Image source: SPOKE (https://spoke.ucsf.edu/)

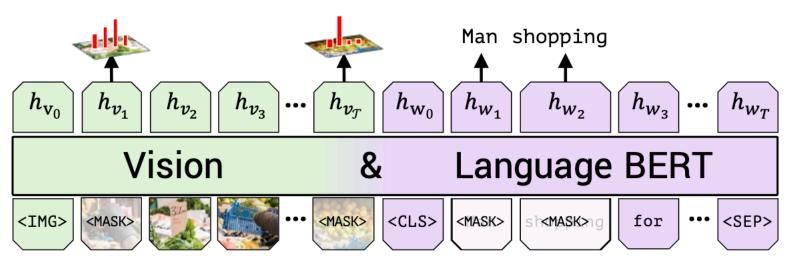


We are Transitioning from the Era of Purely Data-Driven Learning to "Domain-Aware" Learning



Leveraging Known Invariances is at the Core of Modern Representation Learning





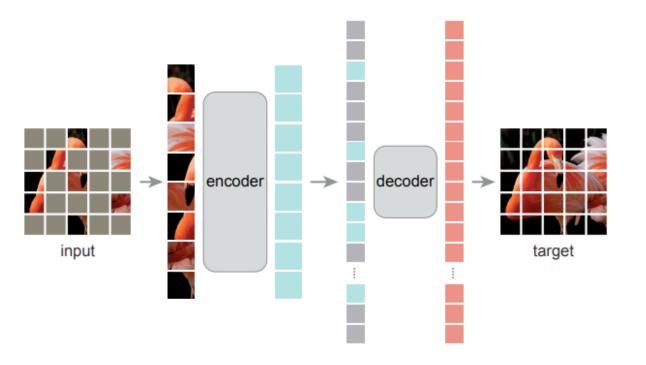
attract
MLP MLP MLP

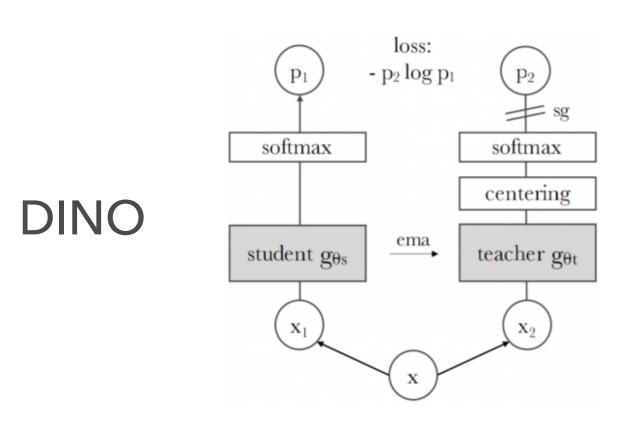
CNN CNN CNN

augmentation

SimCLR, MoCo

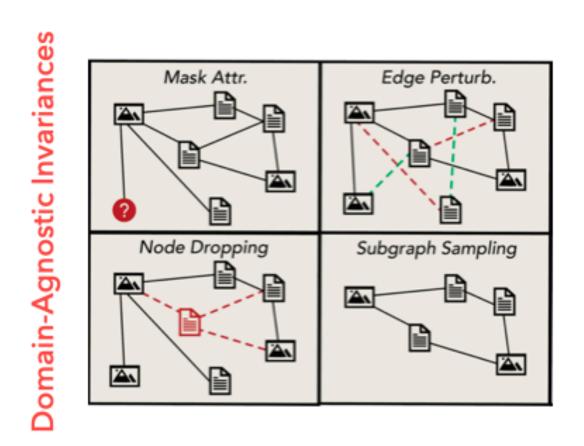
Masked Autoencoders

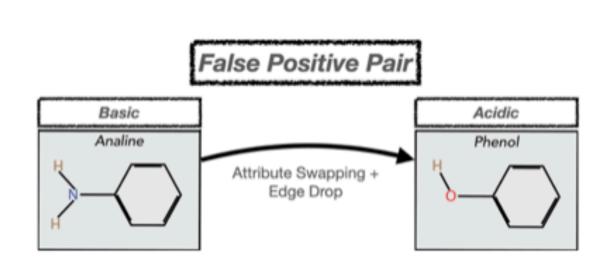


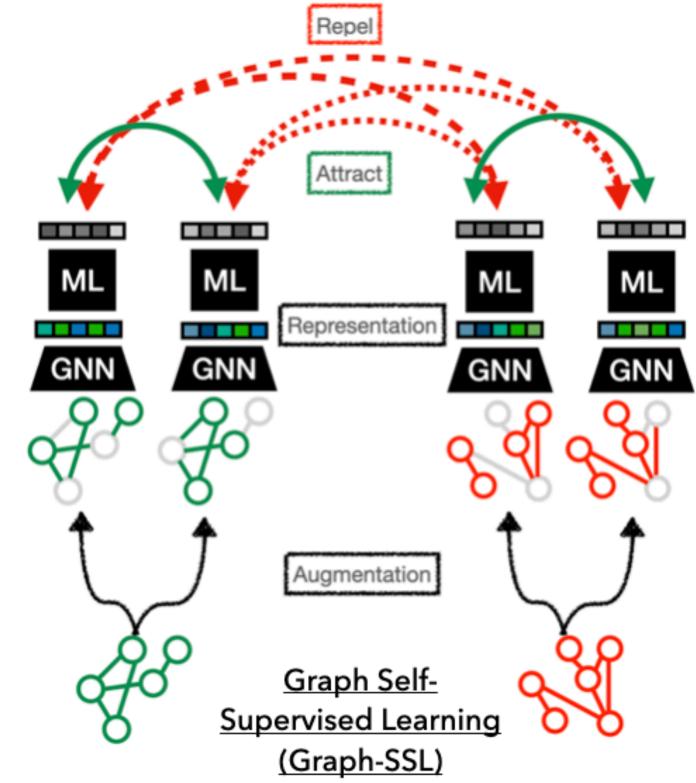


VILBERT

"Generic Augmentations" Are Not a Silver Bullet for All Applications and Data Modalities



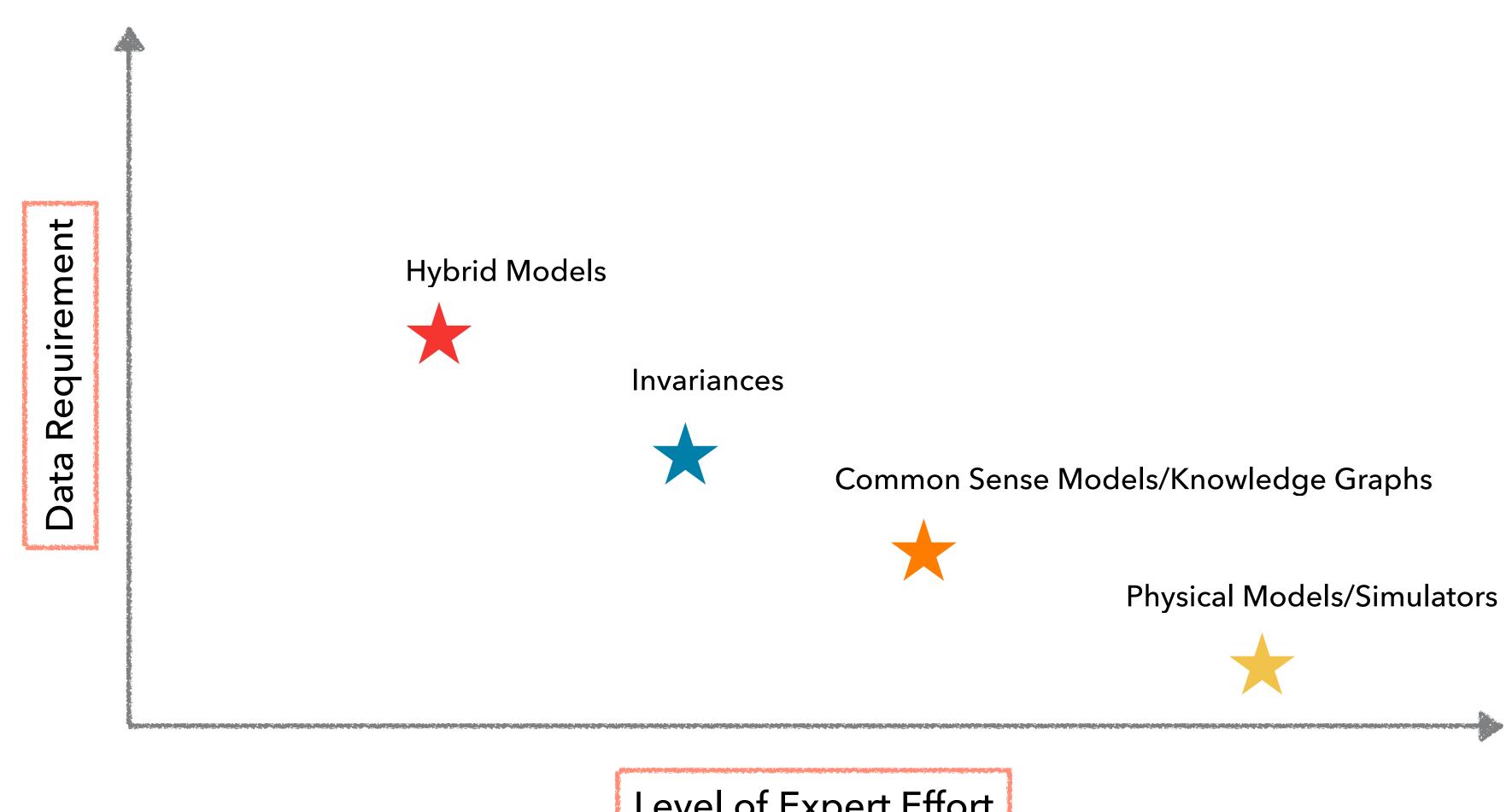




Choosing the "right" augmentations is indeed domain knowledge

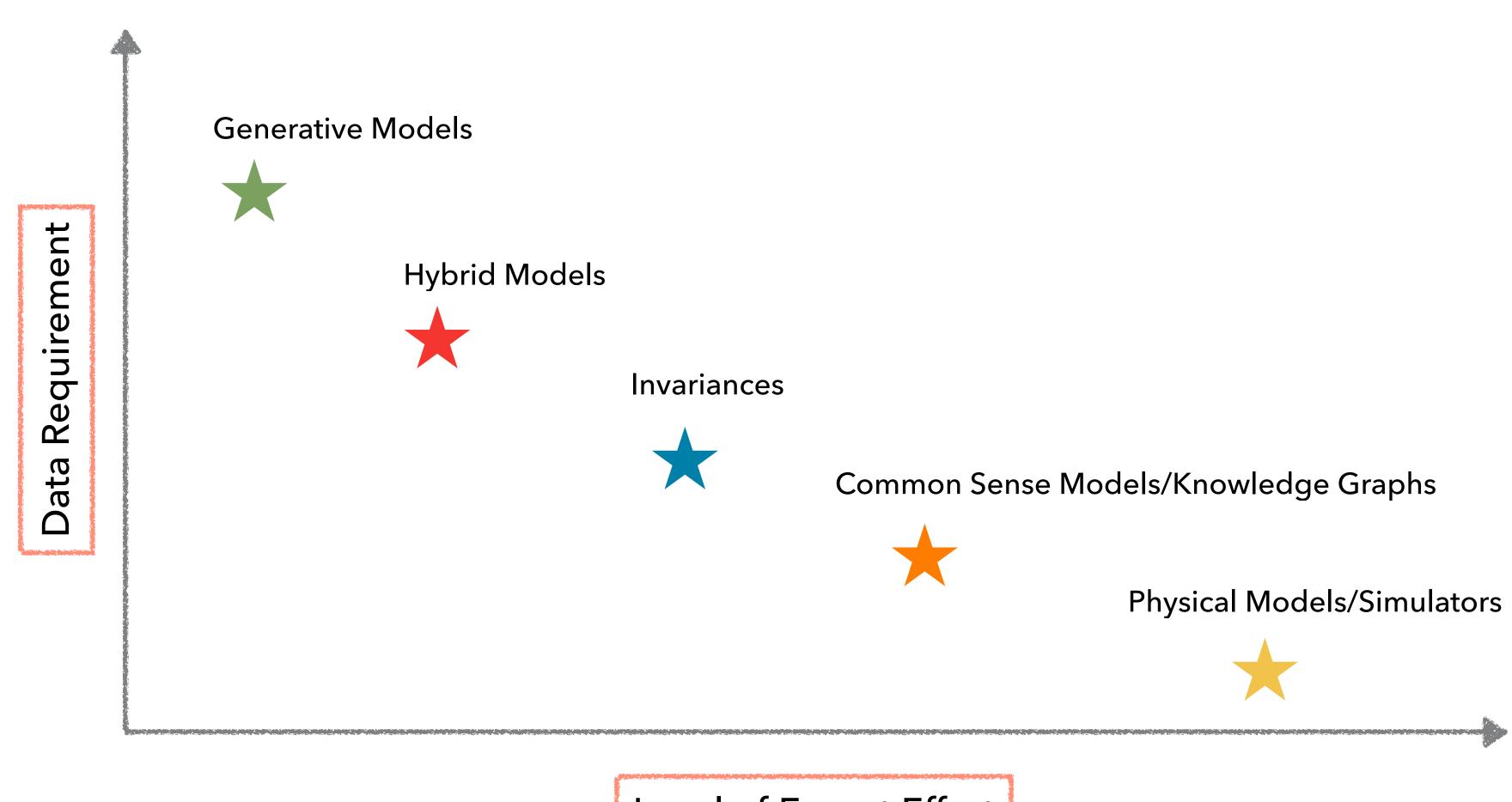
In practice, even state-of-the-art AutoAug techniques fail to pick the "right" augmentation

We are Transitioning from the Era of Purely Data-Driven Learning to "Domain-Aware" Learning



Level of Expert Effort

We are Transitioning from the Era of Purely Data-Driven Learning to "Domain-Aware" Learning

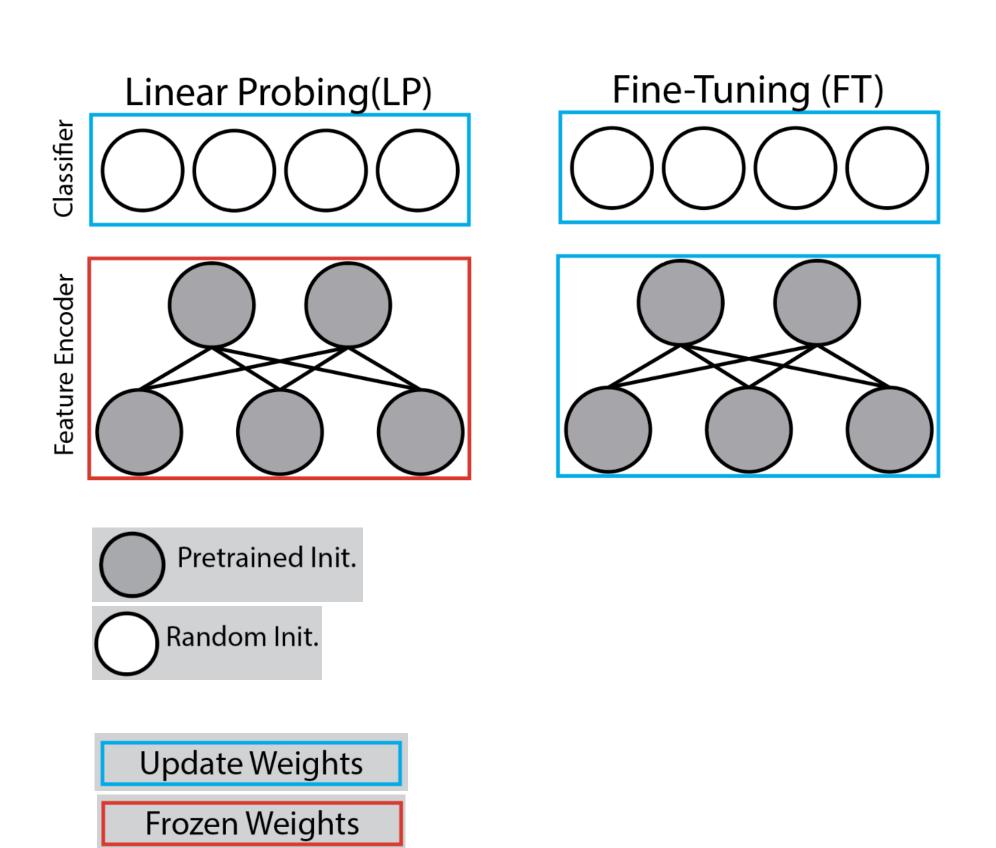


Level of Expert Effort

Generalization vs Safety Trade-off when Adapting from Pre-Trained Representations

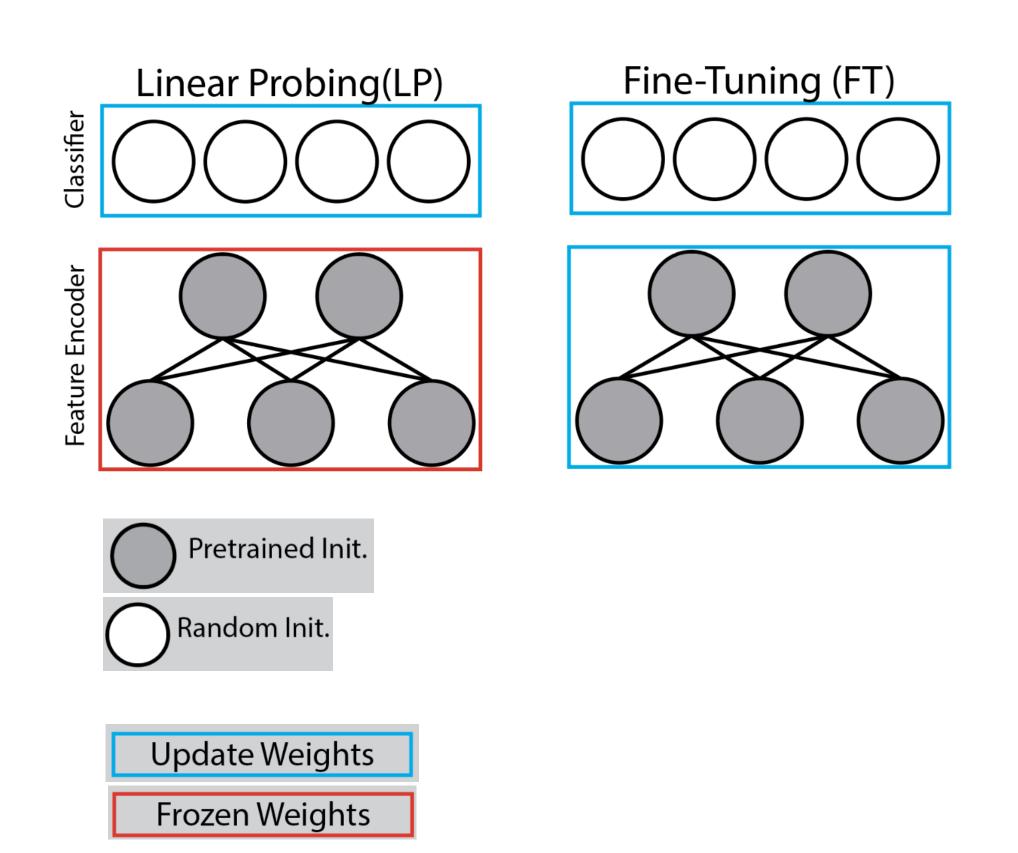
Controlling Feature Distortion by Mitigating Simplicity Bias

With Pre-trained Representations, Adaptation Protocols Have Become a Critical Part of Current ML Pipelines

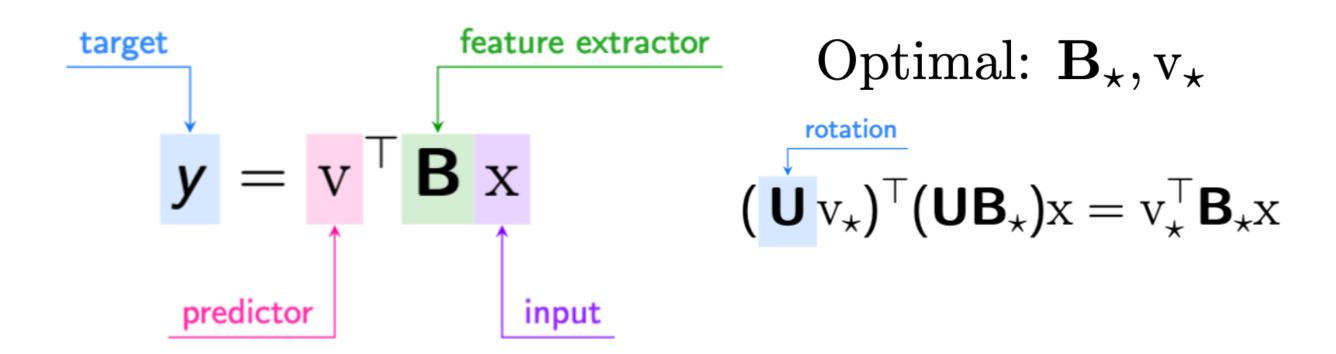


- What happens with dataset biases?
 LP is already sufficient to avoid shortcuts
 through data reweighting! (Kirichenko et al., arxiv: 2204.02937)
- How do the protocols generalize to ID data?
 By adapting all network features FT often performs better than LP
- How do the protocols generalize to OOD data?
 Surprisingly, under distribution shifts (CIFAR-10 to STL-10), LP outperforms FT

Why does Model Fine-Tuning Compromise on OOD Accuracy?



Lens of Feature Distortion

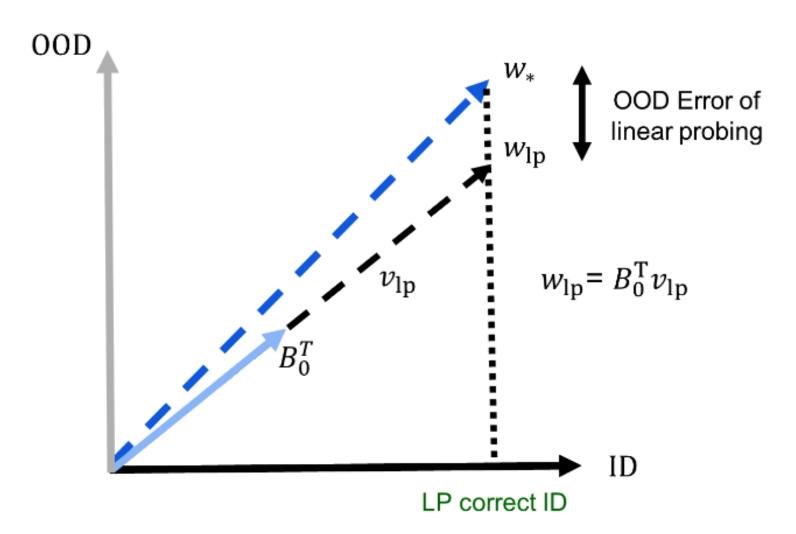


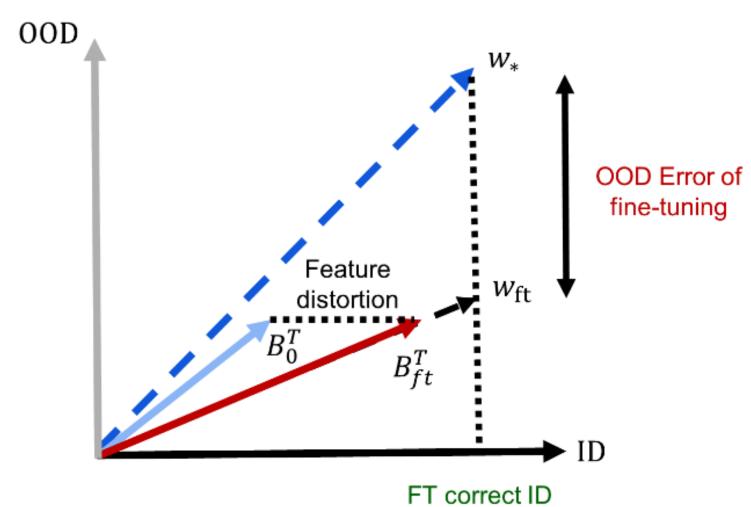
FEATURE EXTRACTOR DISTANCE

Distance between two feature extractors is measured as

$$d(\mathbf{B}_0, \mathbf{B}_{\star}) = \min_{\mathbf{U}} \|\mathbf{B}_0 - \mathbf{U}\mathbf{B}\|_2$$

Why does Model Fine-Tuning Compromise on OOD Accuracy?





Two Key Insights

 Features get distorted only in the ID subspace and not in the orthogonal subspace

$$\nabla_{\mathbf{B}} L(\mathbf{v}, \mathbf{B}) = 2\mathbf{v}(\mathbf{Y} - \mathbf{X}\mathbf{B}\mathbf{v})^{\top}\mathbf{X} \quad \nabla_{\mathbf{B}} L(\mathbf{v}, \mathbf{B})\mathbf{u} = 0, \mathbf{u} \in S^{\perp}$$

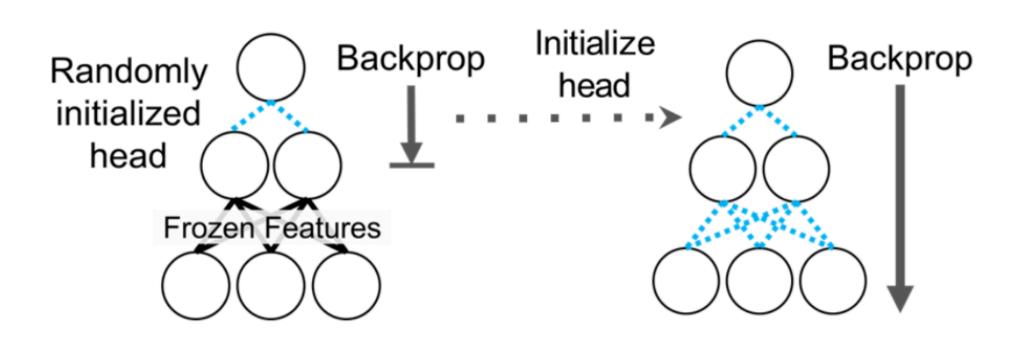
• Feature distortion leads to higher OOD error

$$\sqrt{\sigma_{\min}(\mathbf{\Sigma})} \left(\frac{\cos \theta_{\max}(R_0, S^{\perp})}{\sqrt{k}} \frac{\min(\phi, \phi^2 / \|\mathbf{w}_{\star}\|_2)}{(1 + \|\mathbf{w}_{\star}\|_2)^2} - \epsilon \right)$$

Lower bound
$$\phi^2 = \left| (\mathbf{v}_0^\top \mathbf{v}_\star)^2 - (\mathbf{v}_\star^\top \mathbf{v}_\star) \right|$$

Empirical Insight: Performing LP Prior to Invoking the FT Step Appears to Fix this Issue

This two-step optimization controls the amount of feature distortion



Kumar et al., "Fine Tuning Can Distort Pre-Trained Features and Underperform Out-of-Distribution", ICLR 2022

Protocol	ID Train ACC	ID Test ACC	OODACC
LP	97.2	91.39	81.94
FT	99.5	95.58	80.34
LP+FT	98.9	94.50	86.57

ID: Cifar-10 OOD: STL-10

Performing LP Prior to Invoking the FT Step Can Fix this Issue or Can It?

Generalization vs Safety Trade-off

WHAT HAPPENS IF WE TAKE INTO ACCOUNT MODEL SAFETY TO OBTAIN A HOLISTIC EVALUATION?

		C	corruptions	S	anomaly rejection		
				<u> </u>			
Protocol	ID Test ACC	OOD ACC	mCA	CE (RMSE)	Anomaly AUROC		
LP	91.39	81.94	69.1	0.171	62.1		
FT	95.58	80.34	74.7	0.137	99.1		
LP+FT	94.50	86.57	69.1	0.217	64.5		

calibration

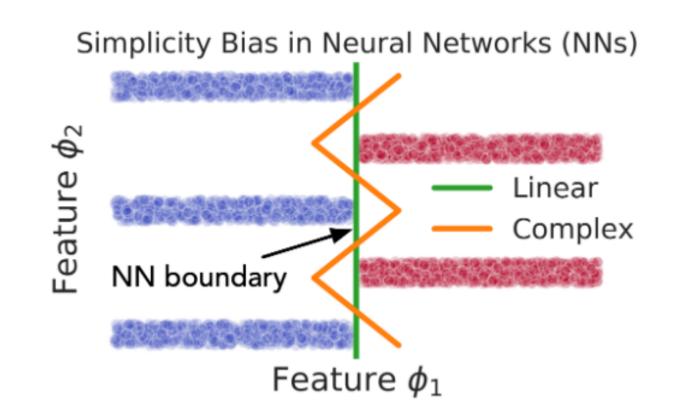
ID: Cifar-10 OOD: STL-10

Balancing Transferability and Task Performance during Adaptation

We consider a synthetic dataset obtained by blending each CIFAR-10 class with a corresponding class from MNIST

Hypothesis: If the LP/FT model relies on the simplest features (digit) and remains invariant to complex features (CIFAR), it will fail when the digit mapping is switched at test time

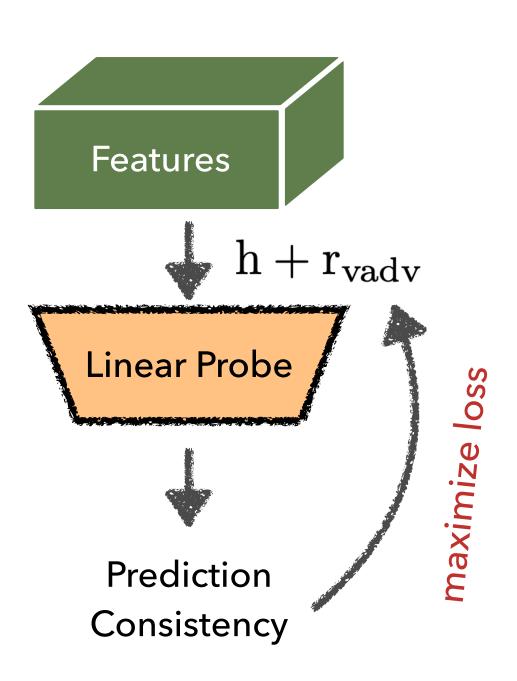
Protocol	ID Test ACC	OOD (Rand) ACC
LP	90.3	79.9
FT	98.5	39.1



Shah et al., "The Pitfalls of Simplicity Bias in Neural Networks", Neurips 2020

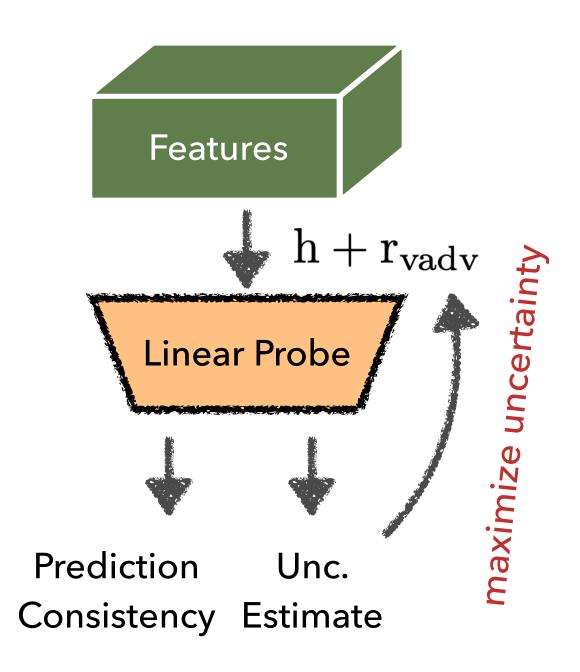
We Leverage Hardness-Promoting Augmentations during LP to Mitigate Simplicity Bias During FT

Loss-based perturbations



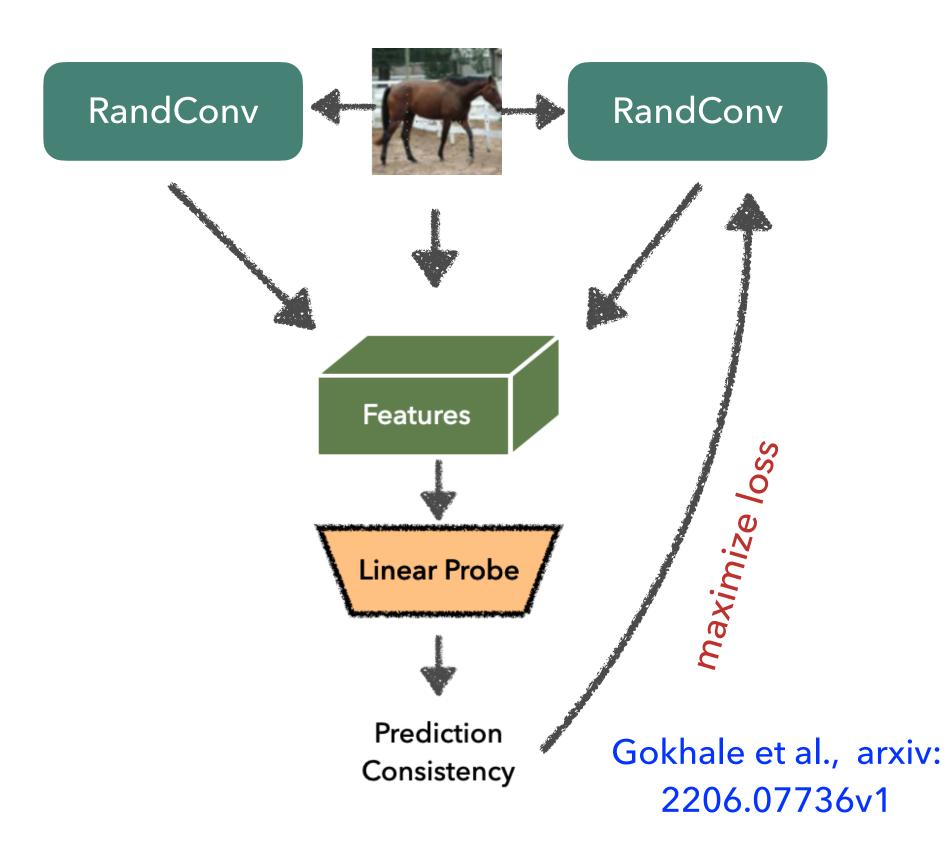
Trivedi et al., arxiv: 2207.12615

Uncertainty-based perturbations



Pagliardini et al., arxiv: 2202.05737

Improved Diversity with ALT

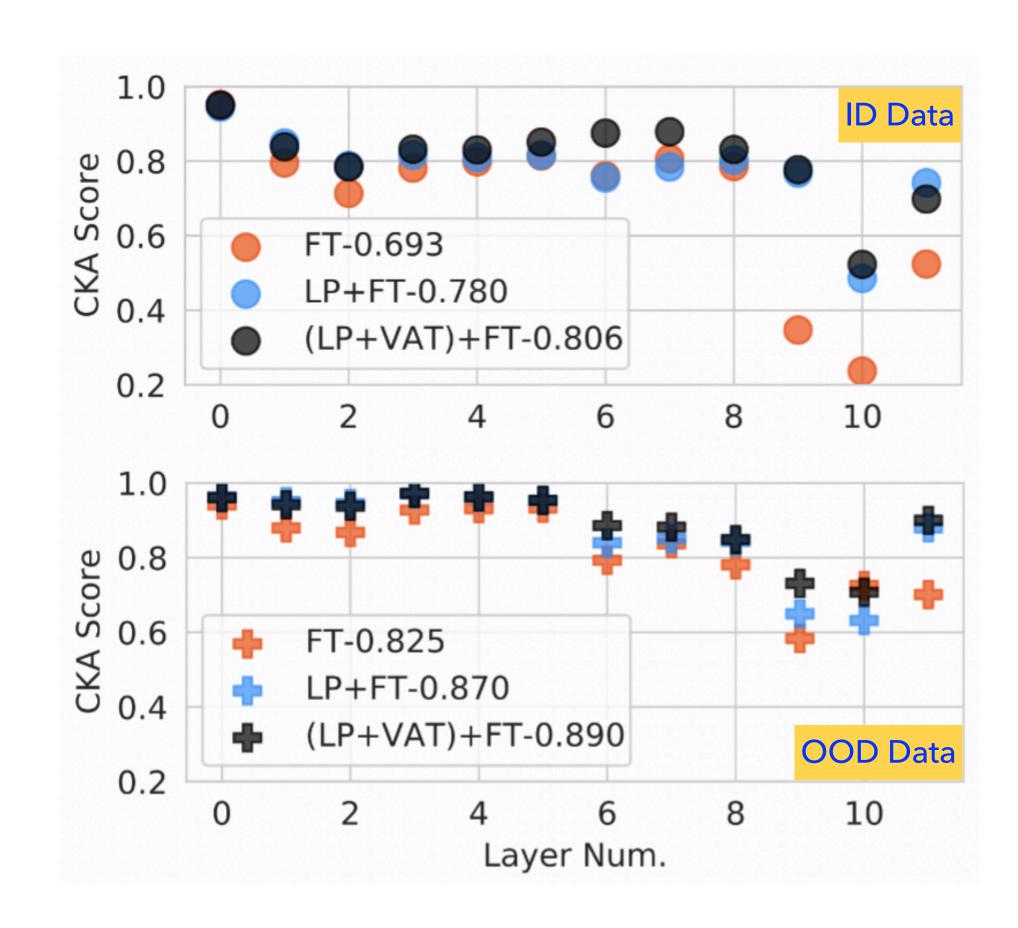


This Modification to the LP Step Further Controls the Feature Distortion in (LP + FT) Protocols

Centered Kernel Alignment (CKA)

$$\frac{\frac{1}{k} \sum_{i=1}^{k} \mathbf{H}(\mathbf{X}_{i} \mathbf{X}_{i}^{\top}, \mathbf{Y}_{i} \mathbf{Y}_{i}^{\top})}{\sqrt{\frac{1}{k} \sum_{i=1}^{k} \mathbf{H}(\mathbf{X}_{i} \mathbf{X}_{i}^{\top}, \mathbf{X}_{i} \mathbf{X}_{i}^{\top})} \sqrt{\frac{1}{k} \sum_{i=1}^{k} \mathbf{H}(\mathbf{Y}_{i} \mathbf{Y}_{i}^{\top}, \mathbf{Y}_{i} \mathbf{Y}_{i}^{\top})}}{\frac{1}{n(n-3)} \left(\operatorname{Tr}(\tilde{\mathbf{K}}\tilde{\mathbf{L}}) + \frac{\mathbf{1}^{\top} \tilde{\mathbf{K}} \mathbf{1} \mathbf{1}^{\top} \tilde{\mathbf{L}} \mathbf{1}}{(n-1)(n-2)} - \frac{2}{n-2} \mathbf{1}^{\top} \tilde{\mathbf{K}} \tilde{\mathbf{L}} \mathbf{1} \right)}$$

Nguyen et al., "Do Wide and Deep Networks Learn the Same Things?", ICLR 2021



How does the Modified LP+FT Protocol Compare?

Generalization vs Safety Trade-off

WHAT HAPPENS IF WE TAKE INTO ACCOUNT MODEL SAFETY TO OBTAIN A HOLISTIC EVALUATION?

		C	S	anomaly rejection			
Protocol	ID Test ACC	OOD ACC	mCA	CE (RMSE)	Anomaly AUROC		
LP	91.39	81.94	69.1	0.171	62.1		
FT	95.58	80.34	74.7	0.137	99.1		
LP+FT	94.50	86.57	69.1	0.217	64.5		
Ours	96.55	92.19	81.35	0.082	94.7		

calibration

Constructing Knowledge Bridges from Task Distributions to Improve Adaptation

Balancing Transferability and Customization

When We Have Access to a Distribution of Tasks, Can We Systematically Improve Adaptation?

Dataset Setting

TRAIN

(Episodes)

TEST

 $\mathcal{T} = (\mathcal{S}_{\mathcal{T}}, \mathcal{Q}_{\mathcal{T}})$

Few-Shot Task Adaptation

$$\mathcal{D}^{tr} = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^{|\mathcal{D}^{tr}|}$$
$$\mathbf{y}_i \in \mathcal{C}^{tr}$$

$$\mathcal{S}_{\mathcal{T}} = \{(\mathbf{x}_1, \mathbf{y}_1), \cdots, (\mathbf{x}_{kN}, \mathbf{y}_{kN})\}$$

$$\mathcal{Q}_{\mathcal{T}} = \{(\mathbf{x}_1^*, \mathbf{y}_1^*), \cdots\}$$

$$(\mathbf{x}, \mathbf{y}) \in \mathcal{D}^{te}$$

$$\mathbf{y}, \mathbf{y}^* \in \{1, \cdots, N\} \subset \mathcal{C}^{te}$$

Meta Learning

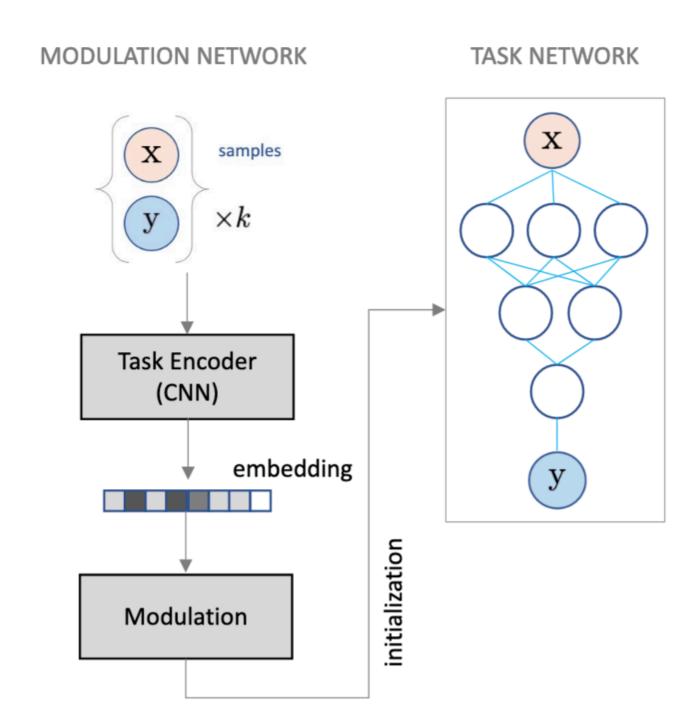
Few-Shot Dataset Generalization

$$\mathcal{D}^{tr} = \mathcal{D}_1^{tr} \cup \mathcal{D}_2^{tr} \cdots \cup \mathcal{D}_M^{tr}$$
$$\mathcal{D}_m^{tr} = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^{|\mathcal{D}_m^{tr}|}, \mathbf{y}_i \in \mathcal{C}_m^{tr}$$

$$S_{\mathcal{T}} = \{(\mathbf{x}_1, \mathbf{y}_1), \cdots, (\mathbf{x}_{kN}, \mathbf{y}_{kN})\}$$
 $Q_{\mathcal{T}} = \{(\mathbf{x}_1^*, \mathbf{y}_1^*), \cdots\}$
 $(\mathbf{x}, \mathbf{y}) \in \mathcal{D}_{M+1}^{te}$
 $\mathbf{y}, \mathbf{y}^* \in \{1, \cdots, N\} \subset \mathcal{C}_{M+1}^{te}$

Complex Semantic and Covariate shifts

Task-Aware Modulation is a common technique used to combat task heterogeneity



Knowledge Bridges to Effectively Leverage Historical Experience for Improved OOD Generalization

MODULATION NETWORK CAML TASK NETWORK \mathbf{X} **Embedding** $\mathcal{B}(\mathbf{x})$ Function (CNN) **Compute Class** meta **Prototypes** knowledge \mathcal{M} prototype pooling embedding Z_i $\sigma(\mathbf{W}_q\mathbf{z}_i+\mathbf{b}_q)\circ\theta_0$ Modulation task-specific initialization

- An external knowledge bridge to aggregate prior experience
- A contrastive training strategy to balance between transferability and customization

$$-\mathbb{E}\left[\log\frac{\exp(\operatorname{sim}(\mathbf{z}_{i},\mathbf{\hat{z}}_{i}))}{\exp(\operatorname{sim}(\mathbf{z}_{i},\mathbf{\hat{z}}_{i}))+\sum_{m\neq n}\exp(\operatorname{sim}(\mathbf{v}_{i}^{m},\mathbf{v}_{i}^{n}))}\right]_{\text{class prototype}}$$

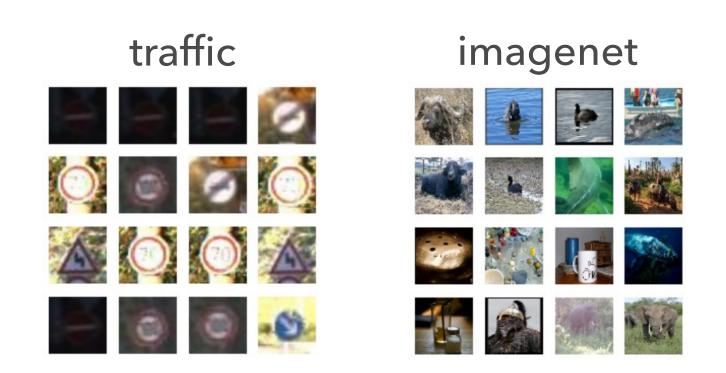
 Exponential moving average update of knowledge bridge (similar to BYOL/DINO-style training)

CAML Produces Highly Robust Meta Learners that Can Handle Challenging Shifts

Observed

flowers aircraft birds in a second s

Adaptation

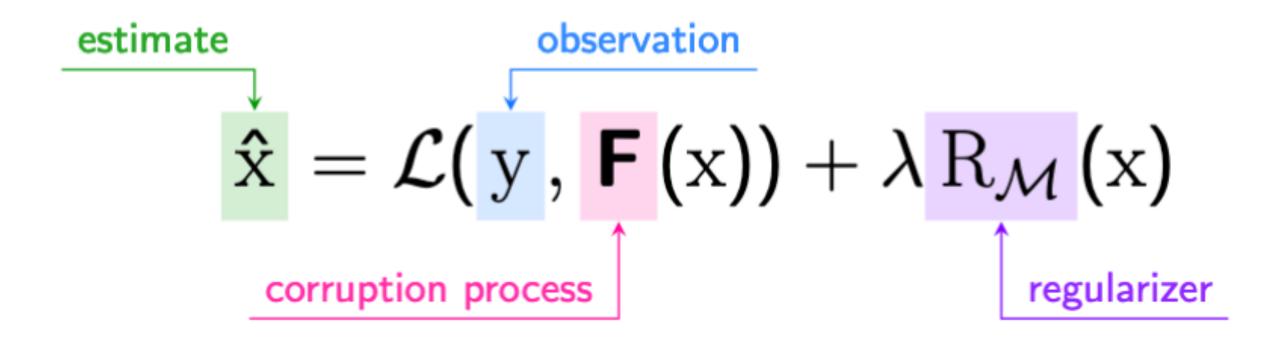


MuMO-MAML	47.44	41.91
ARML	52.69	44.63
CAML	62.18	50.39

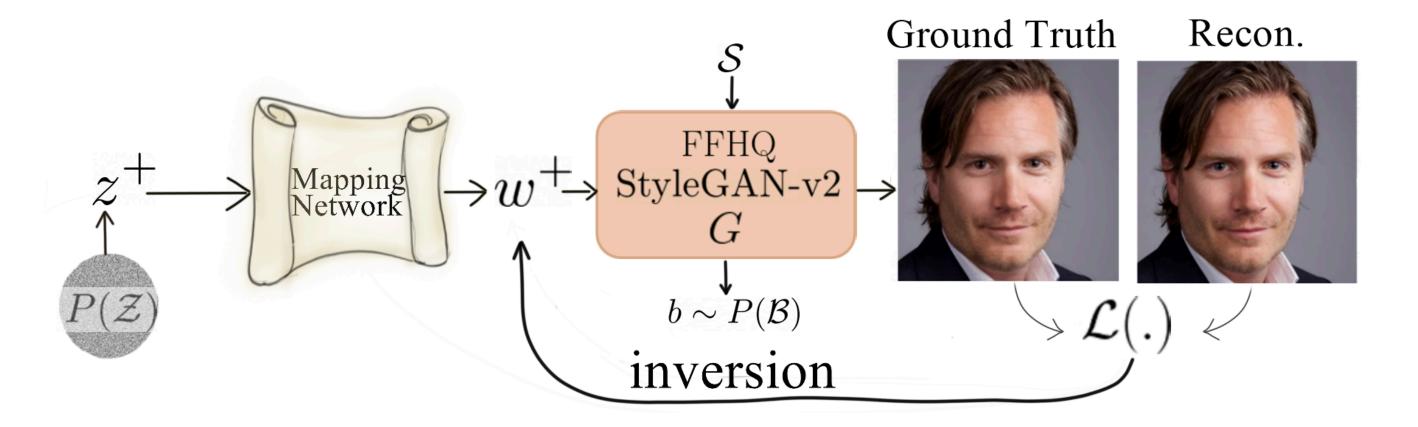
Enabling Reliable OOD Inversion and Manipulation with Generative Models

Effectively Utilizing General-Purpose Priors

Pre-Trained Generative Models Provide Strong Priors to Solve Ill-Posed Inversion Tasks



Corruption process: identity transformation

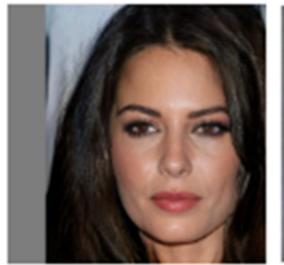


- Projected Gradient Descent
- Intermediate Layer Optimization
- 12S, 12S++
- IDInvert
- StyleRig
- StyleFlow

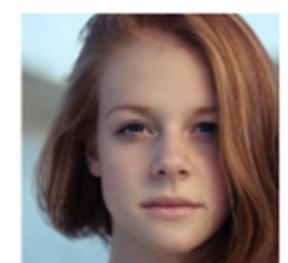
•

What Happens When We Attempt to Recover an 00D Image using this Approach?

GAN Inversion using ILO

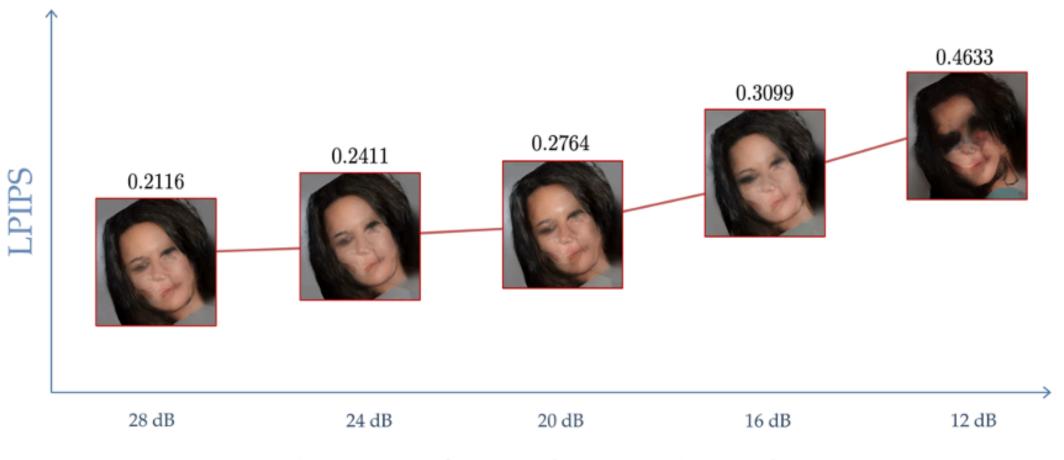


Translation



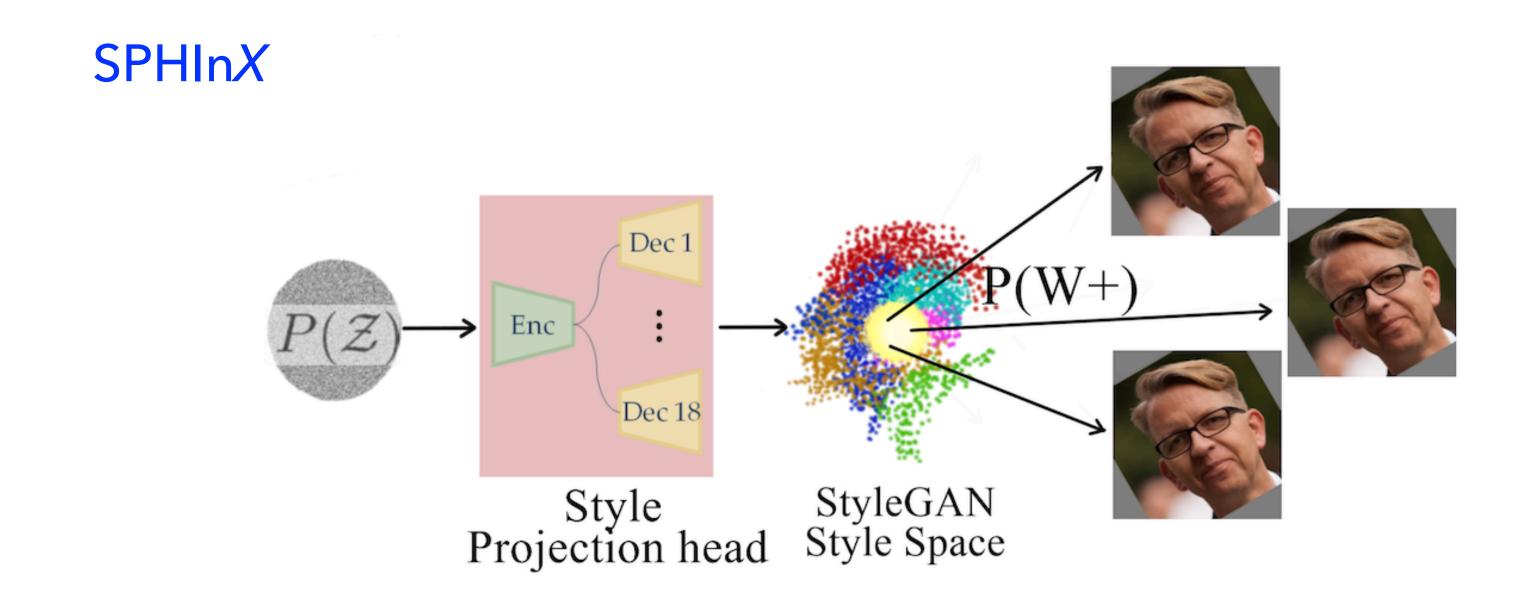
Zoom

- Non-robust nature of W+ optimization
- Lack of priors in W+ to regularize the inversion



Severity of Perturbation - SNR (dB)

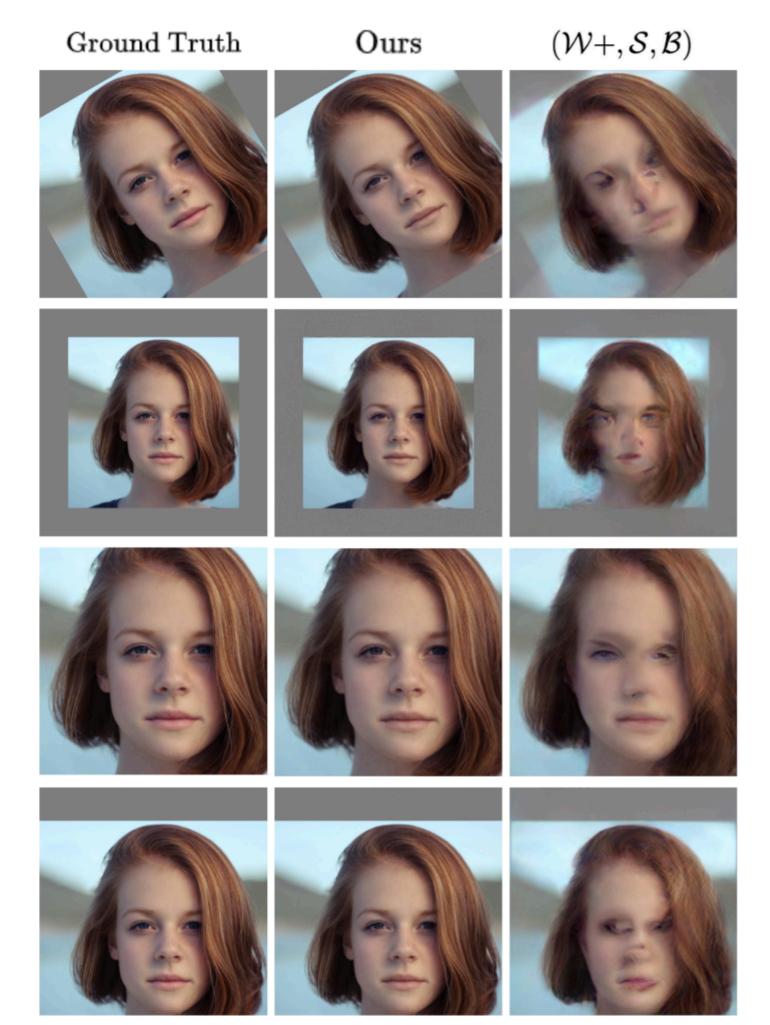
By Expressing Uncertainties in the Style Space, We Can Implicitly Impose a Vicinal Regularization



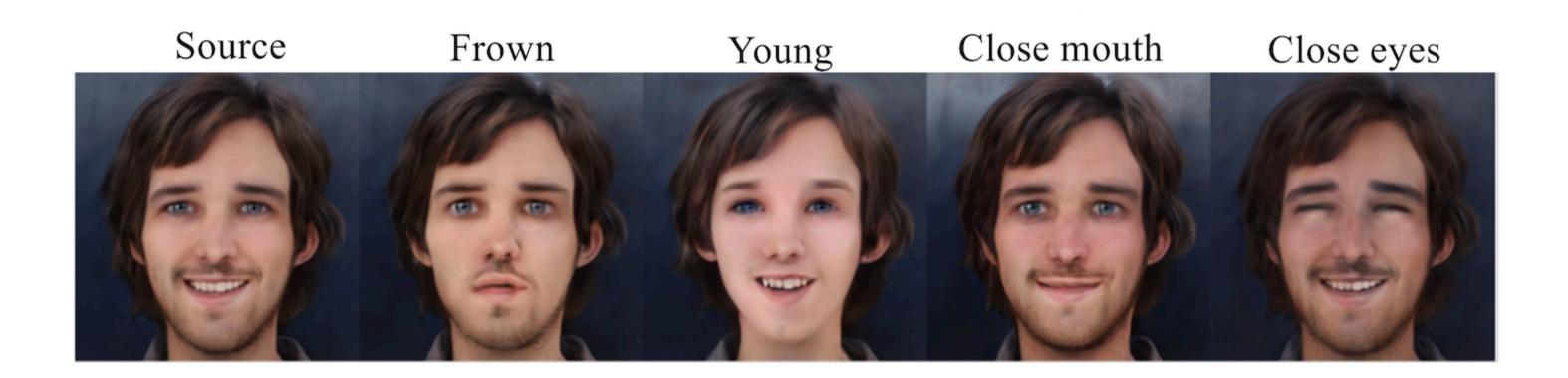
- Learn a distributional mapping from P(Z) to P(W+), such that any realization recovers the observation
- Projection head that decouples the different style latent spaces
- Produces solutions that are locally robust

SPHInX Consistently Leads to Higher Fidelity Inversion under Challenging Distribution Shifts

Method	Translation			Rotation			Scaling				
	0	50	100	150	10	20	30	0.75	0.875	1.125	1.25
Image2StyleGAN	25.63	25.06	24.53	23.92	25.76	24.65	23.87	25.82	25.25	26.17	26.27
P-norm+	21.79	20.94	19.78	18.54	20.70	18.91	17.93	21.53	19.41	22.07	21.85
StyleGAN2 Inv.	18.73	18.29	17.31	16.71	17.95	17.22	16.02	18.65	18.43	19.12	19.43
PSP	20.54	19.03	17.59	16.50	19.14	17.78	16.99	19.02	17.78	20.63	20.15
BDInvert	<u>26.47</u>	26.30	<u>26.37</u>	<u>26.43</u>	<u>26.48</u>	<u>26.49</u>	<u>26.33</u>	<u>26.44</u>	<u>26.28</u>	<u>26.98</u>	<u>27.26</u>
SPHInX	29.68	29.31	28.96	28.81	29.12	28.72	28.59	28.62	29.07	29.22	28.71



Can Attribute Directions from the Original GAN used for OOD Images?



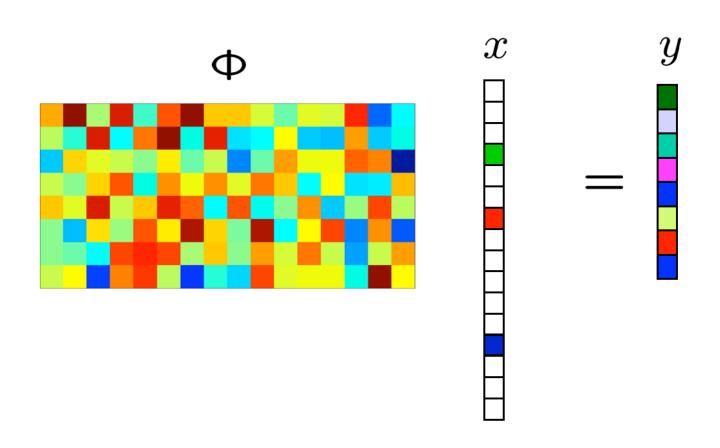
Semantic editing of cartoon images

attribute direction

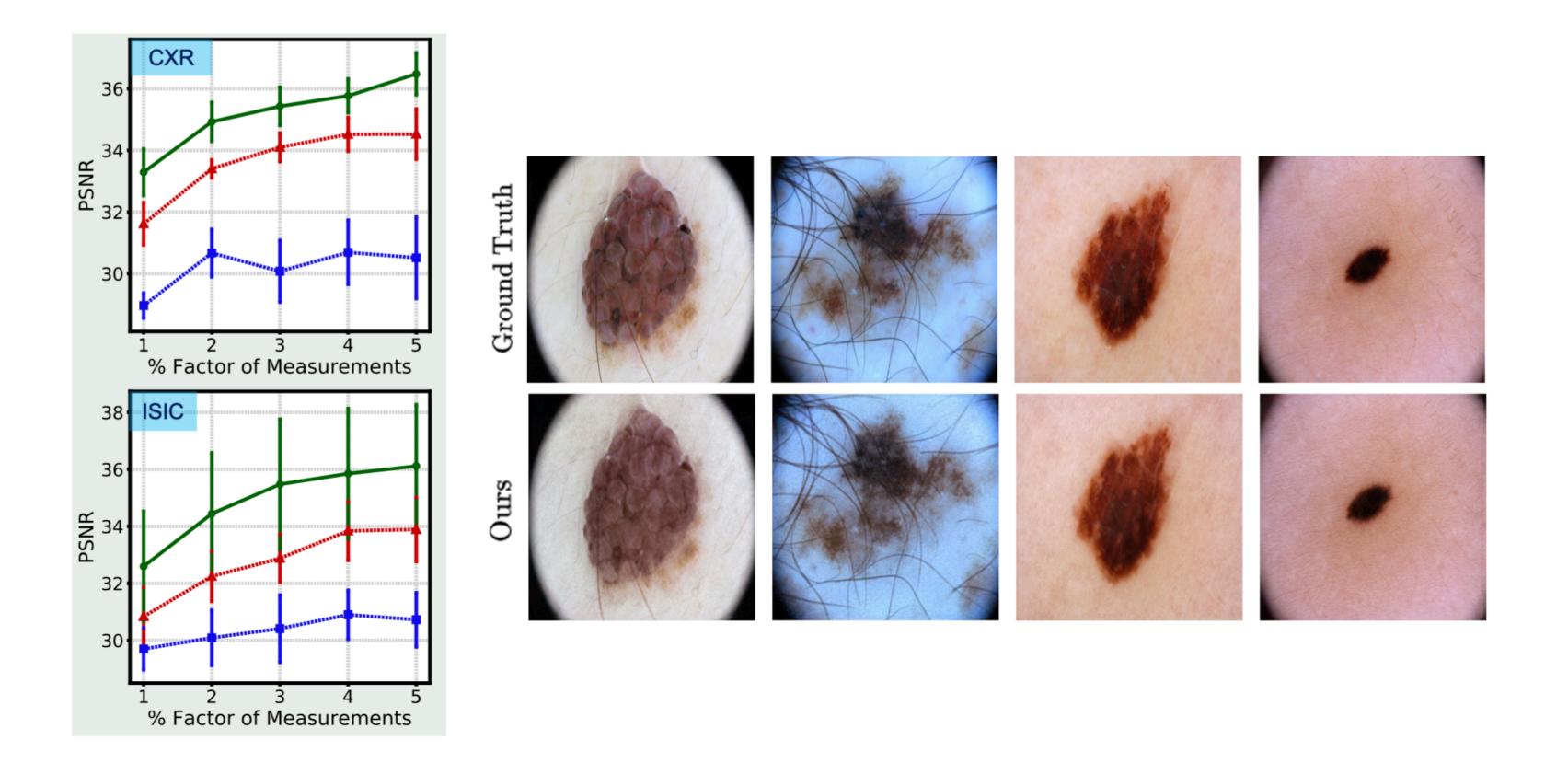
Source Frown Old Close mouth Close eyes

SPHInX Improves the Fidelity of OOD Inversion Even Under Larger Semantic Discrepancies

Compressive Recovery of Medical Images

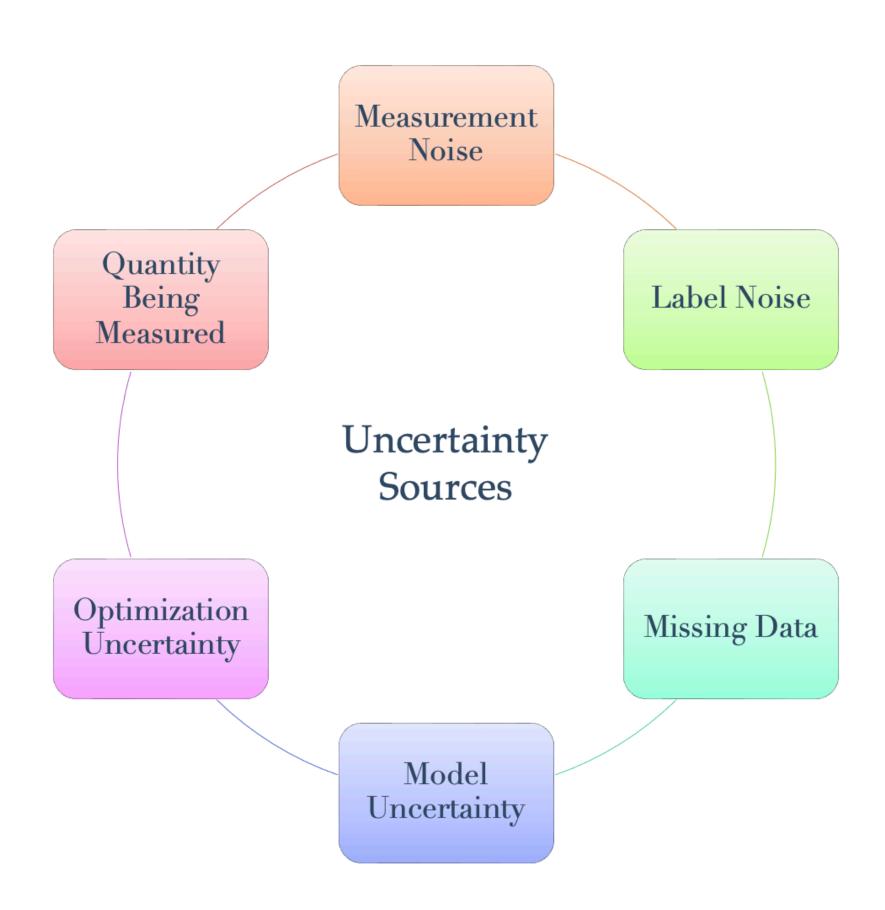


Prior: StyleGAN trained on FFHQ faces



Advancing Model Characterization to Promote Safe Models

A Fine-Grained Characterization of the Model is Required to Systematically Promote Safe Models

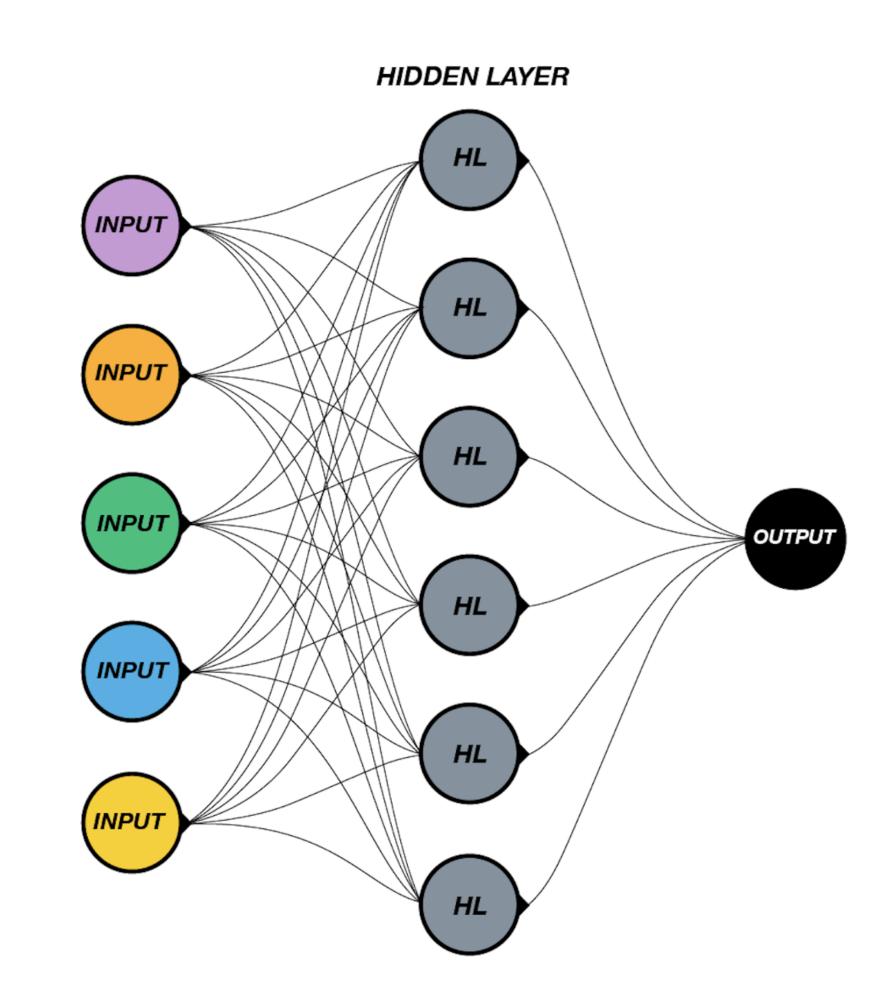


 Modeling different sources of variability and aggregating them to estimate the posterior predictive distribution.

$$p(y|\mathbf{x}) = \int \underbrace{P(y|\mathbf{x}, \boldsymbol{\theta})}_{\text{Aleatoric}} \underbrace{p(\boldsymbol{\theta} \mid \mathbb{D})}_{\text{Epistemic}} d\,\boldsymbol{\theta}$$

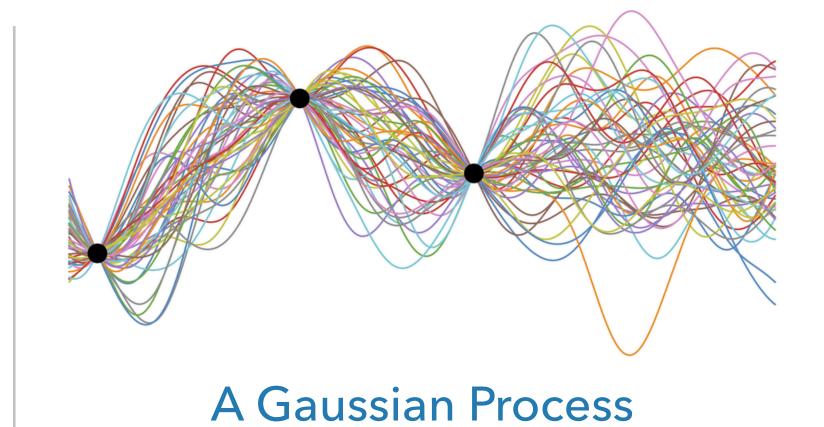
Aleatoric Uncertainties – What You Cannot Know!

- Uncertainties arising from data, that are "irreducible" even with infinite samples.
- Sometimes, can be resolved by leveraging additional features or views of the data.



Epistemic Uncertainties – What You Do Not Know!

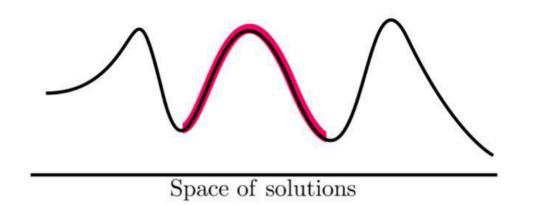
- Given finite training data, many models can fit the same data well.
- Variability in the hypotheses can be interpreted as model uncertainties.
- "Reducible" and vanishes in the limit of infinite data.



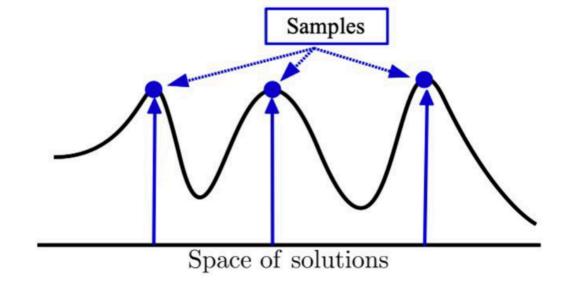
Probabilistic Approach

$$\frac{1}{S} \sum_{s=1}^{S} p(\mathbf{y} \mid \mathbf{x}, \boldsymbol{\theta}^{(s)})$$

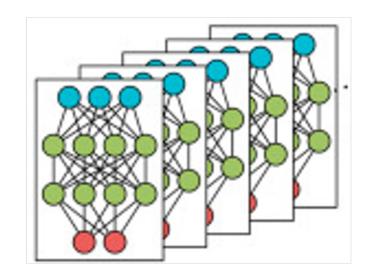
Variational



Sampling



Ensembling



A Motivating Experiment

Consider a training dataset: $\mathcal{D} = \{(x_i, y_i)\}, ext{where } x_i, y_i \in \mathbb{R}^d$

Now, construct these biased datasets – and fits deep networks to each of them

Will the resulting deep networks be the same?

Anchors

Anchoring: A New Principle for Quantifying Epistemic Uncertainties

If we use a <u>shift-invariant</u> kernel to build models, we will learn the same function

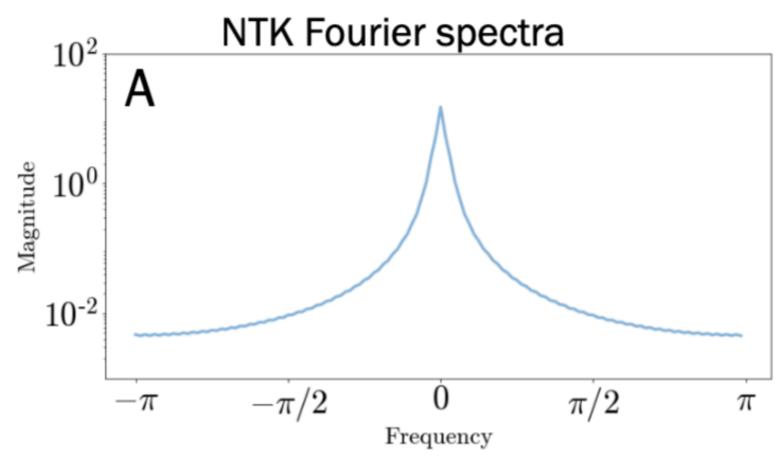
$$f_{c_0}=f_{c_1}=\cdots=f_{c_k}, \ ext{if } \kappa(x_i,x_j)=\kappa(x_i-c,x_j-c)$$

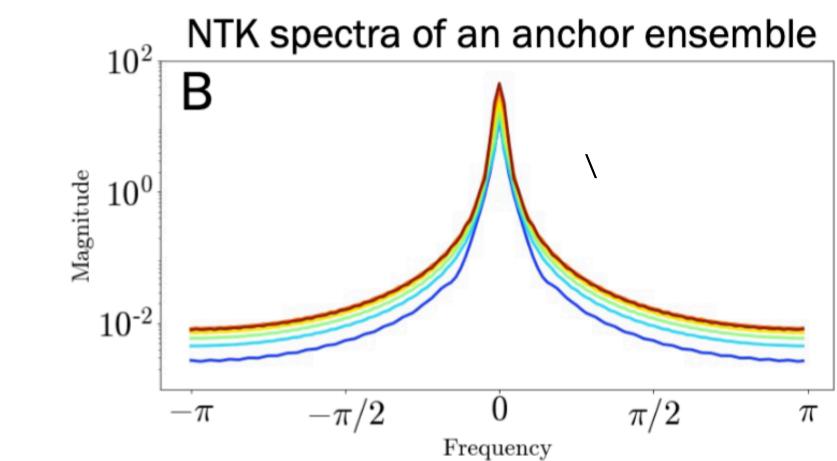
Interesting observation: The <u>neural</u> tangent kernel induced by a deep network is not shift-invariant.

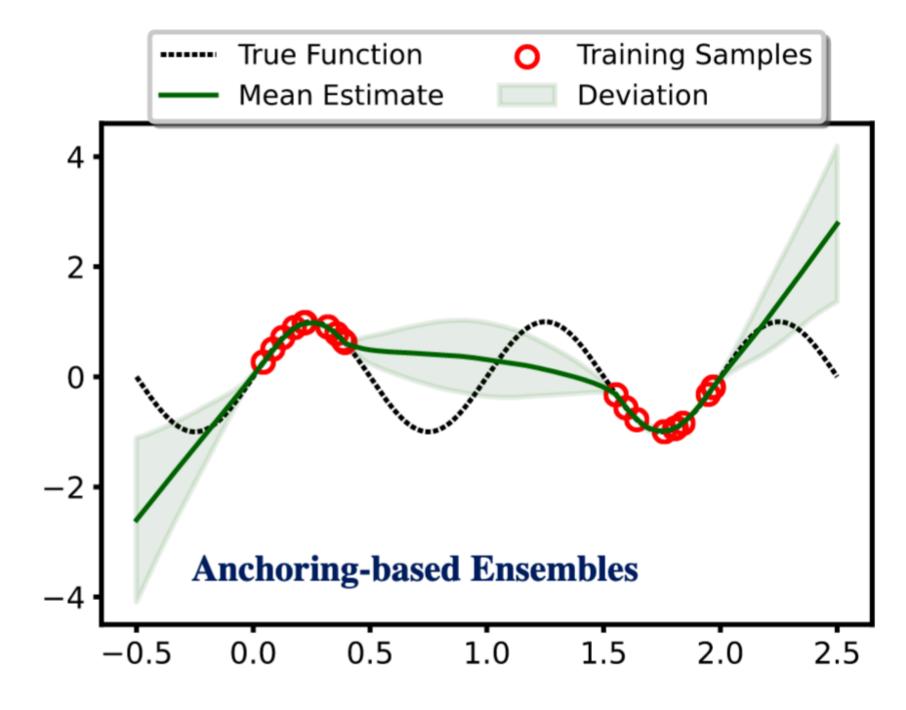
$$\mathbf{K}_{\mathbf{x}_i \mathbf{x}_j} = h_{\mathsf{NTK}}(\mathbf{x}_i^{\mathsf{T}} \mathbf{x}_j) = \frac{1}{2\pi} \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_j (\pi - \mathsf{cos}^{-1}(\mathbf{x}_i^{\mathsf{T}} \mathbf{x}_j)$$

$$\mathbf{K}_{(\mathrm{x}_i-\mathrm{c})(\mathrm{x}_j-\mathrm{c})} = \mathbf{K}_{\mathrm{x}_i\mathrm{x}_j} - \mathbf{\Gamma}_{\mathrm{x}_i,\mathrm{x}_j,\mathrm{c}}$$

Ensembling via Stochastic Data Centering







Mean estimate

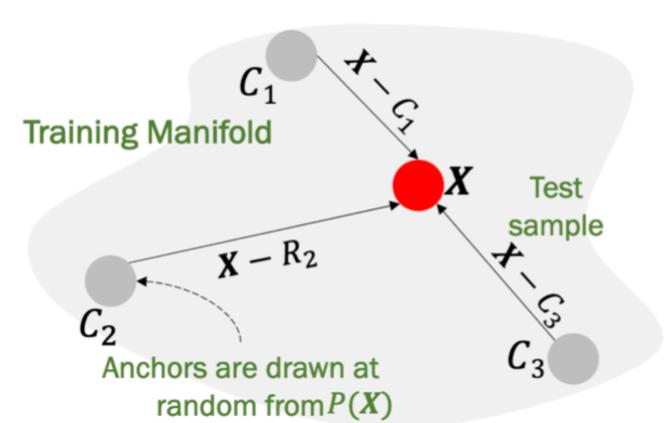
$$rac{1}{K}\sum_{k=1}^K f_{ heta}(c_k,x-c_k)$$

Uncertainty estimate

$$\sqrt{rac{1}{K}\sum_{k=1}^K \left(f_ heta(c_k,x-c_k)-\mu
ight)^2
ight)}$$

Each shift introduces a different bias, resulting in a different hypothesis!

Δ -UQ: Rolling Anchor Ensembling into a Single Model Training



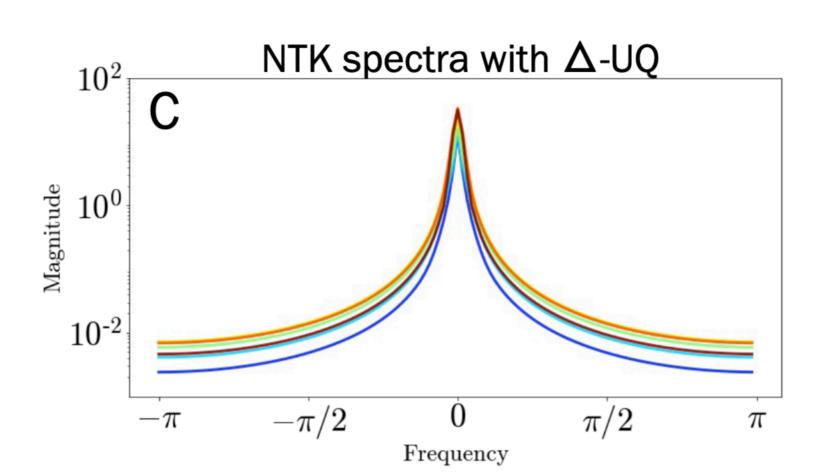
Puchored
$$C_1, (X - C_1) \rightarrow \hat{Y}_1$$

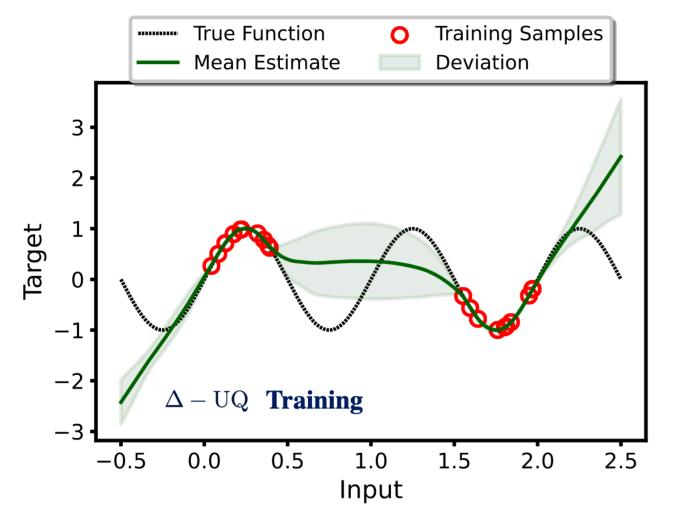
$$C_2, (X - C_2) \rightarrow \hat{Y}_2$$

$$C_3, (X - C_3) \rightarrow \hat{Y}_3$$

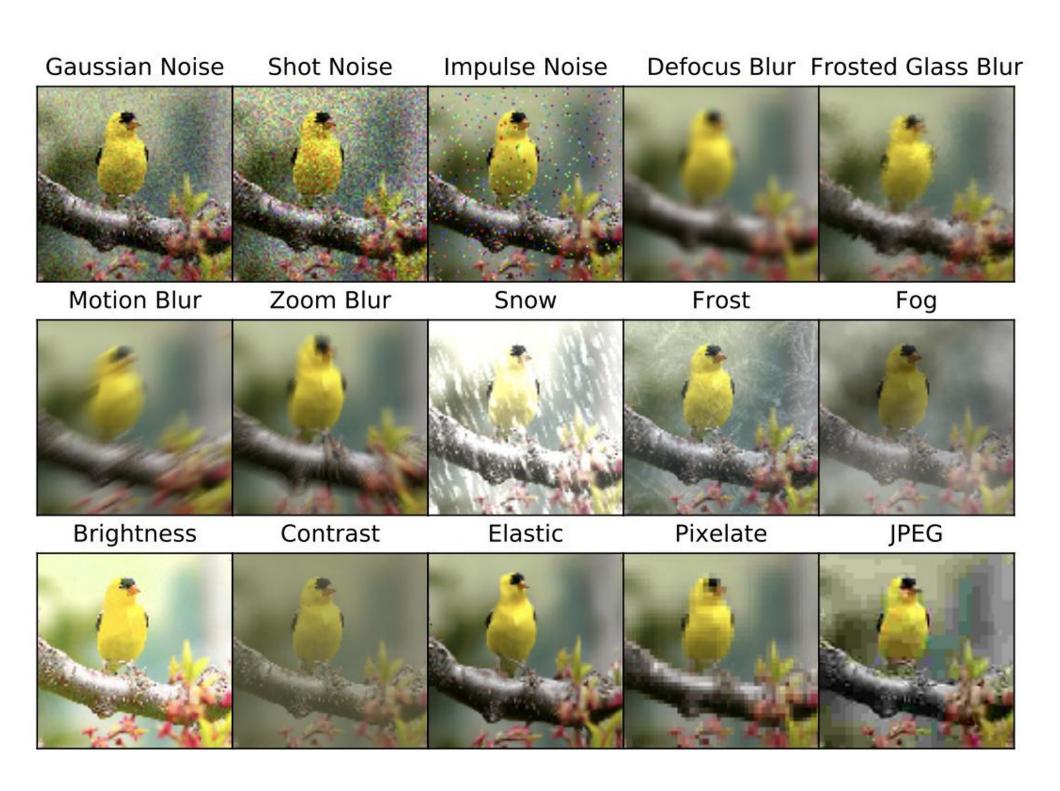
$$heta^* = rg \min_{ heta} \mathcal{L}(f(x_c, heta), y)$$
 where $x_c = (c, x - c)$ for $c \sim P(x)$

$$f_{\Delta}(\{c_1, x - c_1\}) = f_{\Delta}(\{c_2, x - c_2\}) = \cdots = f_{\Delta}(\{c_k, x - c_k\})$$

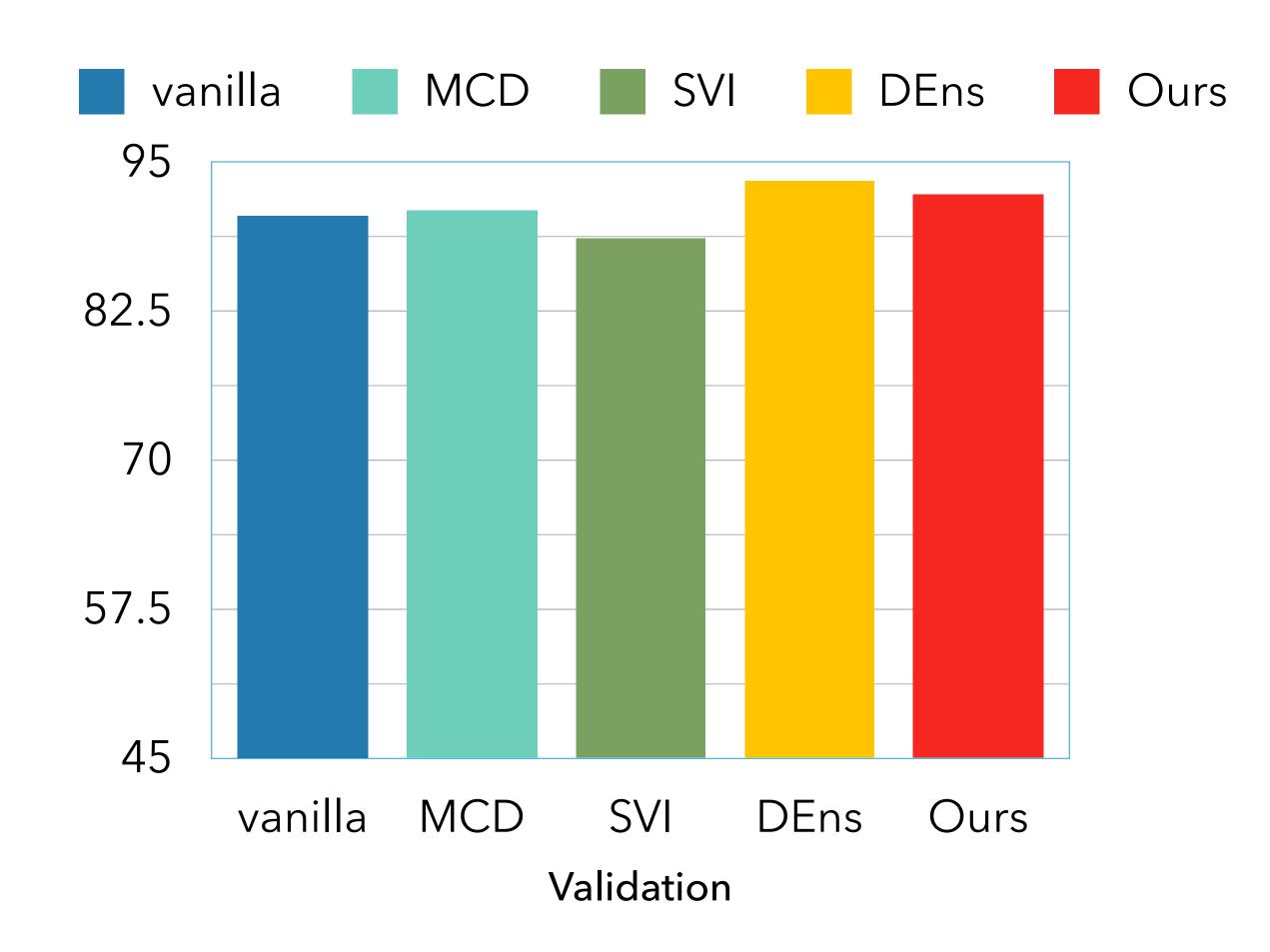




Δ -UQ Models Do Not Compromise on ID Performance, but Withstands Corruptions Better



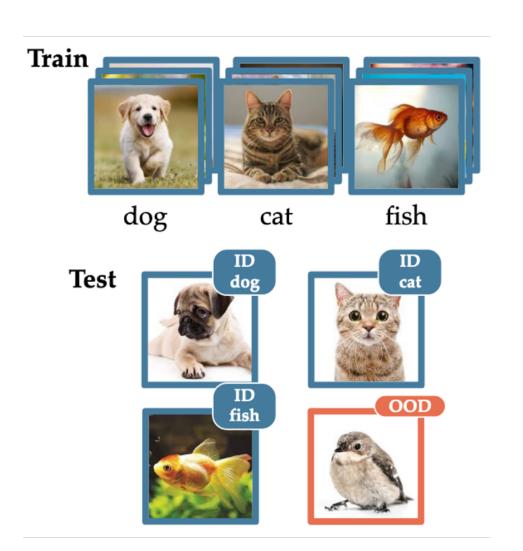
CIFAR10 -> CIFAR10-C



Reliable Anomaly Detection: Adaptive Temperature Scaling via Δ -UQ Uncertainties

Anchor Marginalized Prediction (AMP) Score

$$\mathcal{S}(\mathbf{x}) = -\frac{1}{N} \sum_{\text{all classes}} \log(\text{SOFTMAX}(H^c(y|\mathbf{x}))) \qquad \qquad H^c(y|\mathbf{x}) = \frac{H(y|\mathbf{x})}{1 + \exp(\boldsymbol{\tau}(\mathbf{x}))}$$



Near OOD

	Method	ResNet-34 FPR95 \downarrow / AUROC \uparrow
C10 o C100	ODIN Energy GM Mahal.* AMP (ours)	58.0 / 88.2 47.5 / 88.4 59.8 / 83.6 58.4 / 88.2 43.5 / 90.2

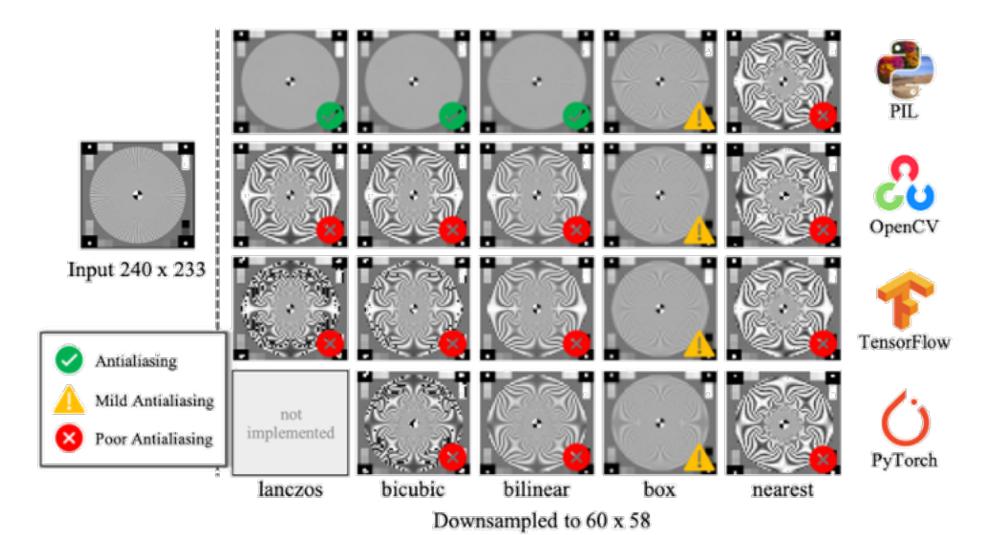
Semantically Coherent OOD (Yang et al., ICCV 2021)

In-distribution	Method	Needs OOD Exposure?	FPR95↓	AUROC ↑
	ODIN (Liang et al., 2017)	×	81.89	77.98
CIEAD 100	Energy (Liu et al., 2020)	X	81.66	79.31
CIFAR-100	OE (Hendrycks et al., 2019)	✓	80.06	78.46
(ResNet-18)	MCD (Yu and Aizawa, 2019)	✓	85.14	74.82
	UDG (Yang et al., 2021)	✓	75.45	79.63
	AMP	X	70.34	82.22

Reliable Anomaly Detection: Adaptive Temperature Scaling via Δ -UQ Uncertainties

And it does not rely on shortcuts to reject anomalous samples!!!

Parmar et al., "On buggy resizing libraries and surprising subtleties in FID calculation", arXiv:2104.11222



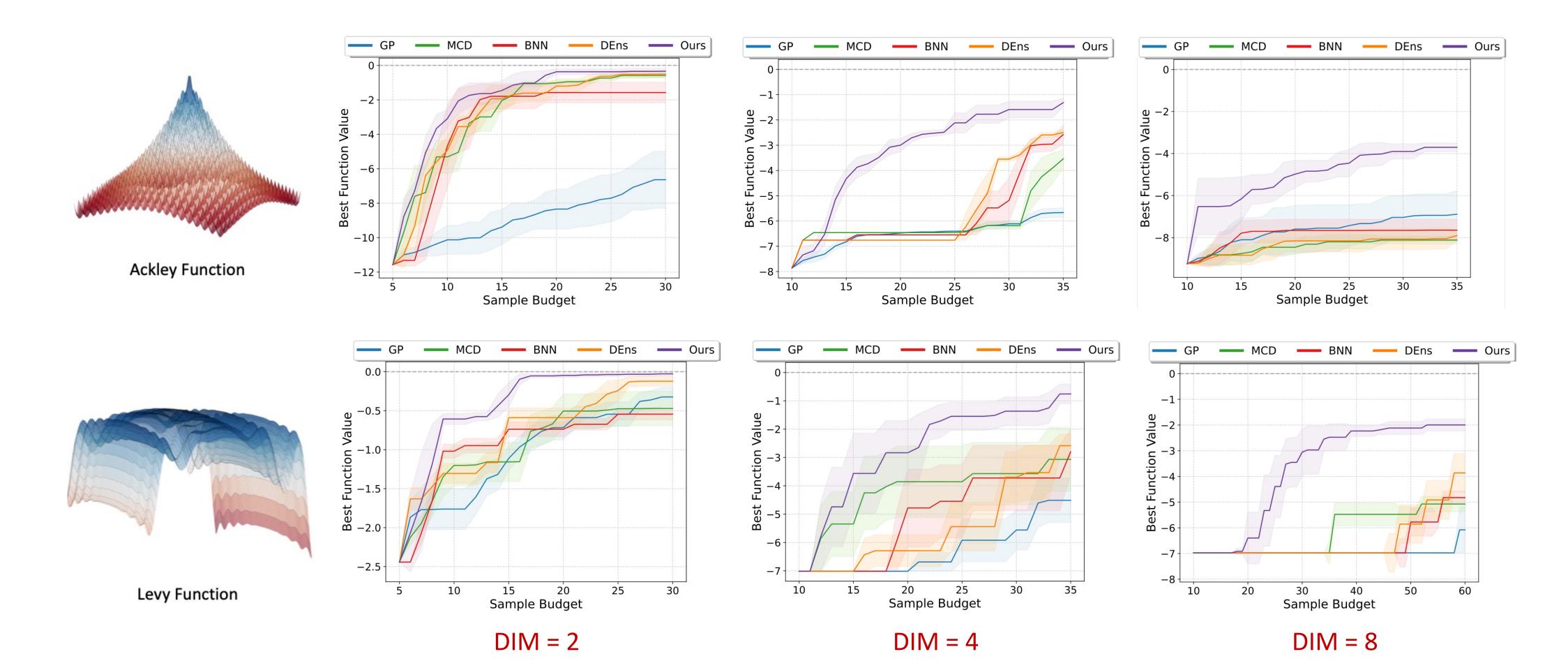
FPR / AUROC Metrics

In Distribution	Distribution Method nearest* Pillow Resizing from original LSUN lanczos				Average	
CIFAR-10 (ResNet-34)	MSP Energy GM	41.5 / 94.0 28.6 / 98.4 1.8 / 99.2	47.8 / 91.6 34.5 / 92.9 46.2 / 90.7	45.5 / 92.2 33.0 / 93.4 49.0 / 90.6	45.3 / 92.4 32.0 / 93.8 46.3 / 91.3	46.9 / 92.2 30.4 / 94.1 25.6 / 94.9
	AMP	7.1 / 98.4	13.0 / 97.4	13.9 / 97.2	14.3 / 97.2	9.6 / 98.1

Δ -UQ Produces Meaningful Estimates even with Limited Data and Leads to Improved Active Learners

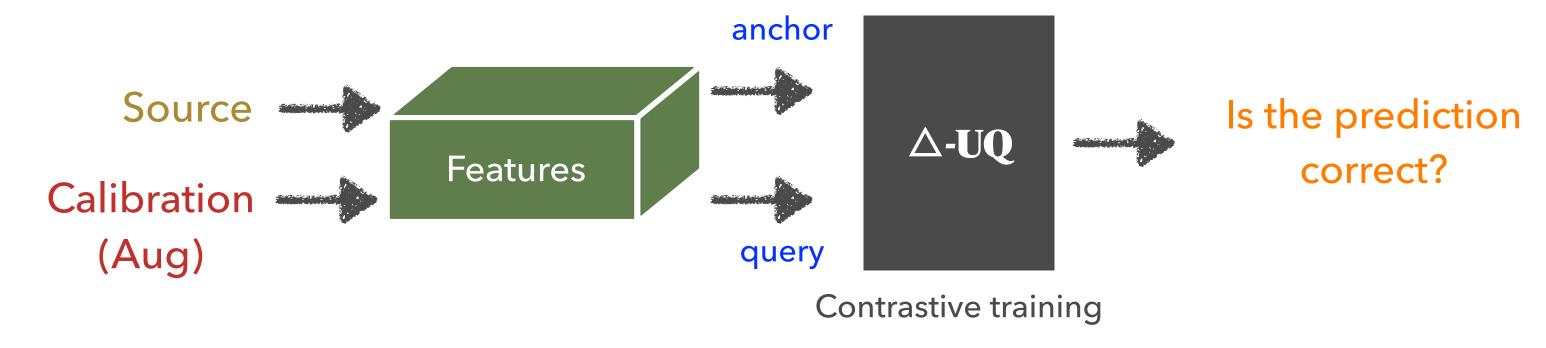
Bayesian Optimization with El

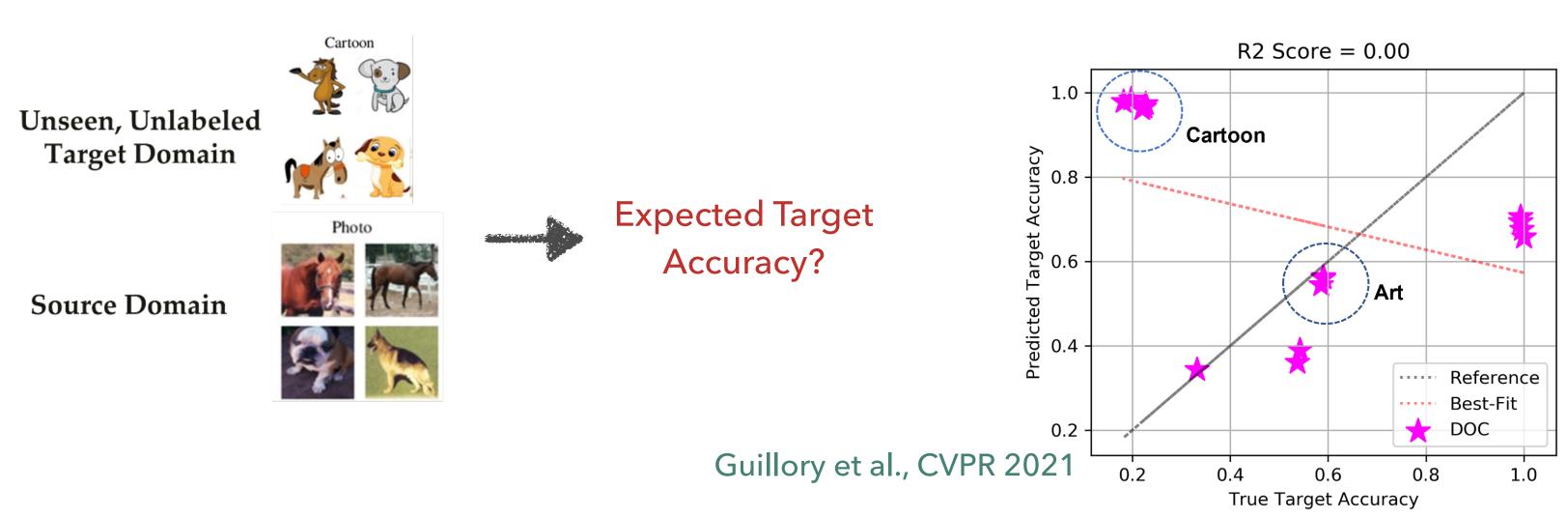
Single Model Uncertainty Estimation via Stochastic Data Centering, https://arxiv.org/abs/2207.07235

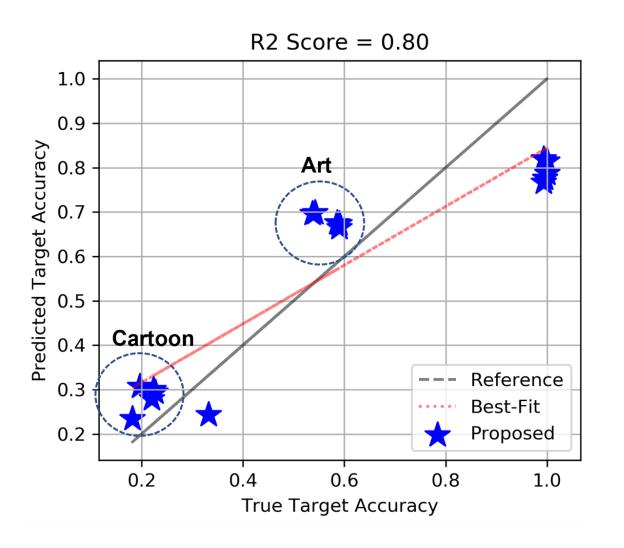


Finally, the Principle of Anchoring can be used to Quantify Representation Uncertainties

Measuring uncertainties in the representation space will provide insights into its generalization







Key Takeaways

- "Knowledge-aware" learning is emerging as a key research field in ML as different forms of world models are becoming available.
- OOD Generalization, ML Safety and data efficiency are critical axes to holistically evaluate how well we leverage these pre-trained models in our ML pipelines.
- We need new theoretical tools to precisely characterize the trade-off between these axes when using different "priors"
- Knowledge is "incomplete" Suitably augmenting world models with our experience is essential to realize closed-loop systems.
- Uncertainty estimation and model reliability characterization are an integral part of model design and optimization.

Rushil Anirudh

Puja Trivedi

Vivek N

Rakshith S

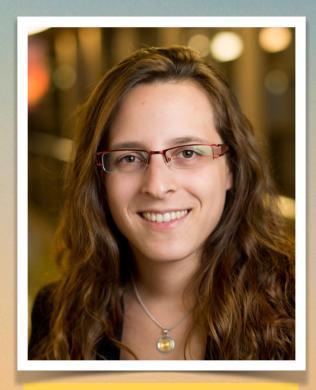
Mark Heimann

Kowshik Thopalli

Peer-Timo Bremer

T. S. Jayram

Yamen Mubarka



Danai Kotura

Deepta Rajan

Bhavya Kailkhura

Pavan Turaga

Andreas Spanias

Luc Peterson

Akshay Chaudhari

Brian Spears

Irene Kim

Thank You!!

