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Data-Driven Methods are Rapidly Transforming Workflows
in Science and Engineering

m) National Institute of Biomedical Imaging and Bioengineering
Creating Biomedical Technologies to Improve Health

National experts chart roadmap

for Al in medical imaging

S| flv]+

Implications and opportunities for Al implementation in
diagnostic medical imaging formulated in workshop report
published in the journal, Radiology

L L R
A U.S. Department of Energy initiative could refurbish existing supercomputers, turning them into high-
performance artificial intelligence machines. uU.s. DEPARTMENT OF ENERGY

Radiologists train for years to attain the skills to interpret subtle and
not-so-subtle distinctions in medical images. Artificial intelligence (Al)
is poised to make profound impact on their efforts, assisting human

Department Of Energy p|anS majOI’ AI pUSh to SpEEd experts with computer-powered algorithms to recognize anatomical

Scientiﬂc discoveries anomalies, enhance interpretation, and improve classification of
medical imaging results.

Artificial Intelligence and Technology
Office

Vision:

Transform DOE into a world-leading Al enterprise by
accelerating the research, development, delivery, and

aEtN E RGY.GOV adoption of Al.



Modern Machine Learning Techniques are Highly Effective
in Modeling Complex Data
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What is Different About Applying Machine Learning Tools
to Scientific Data?

Scientific problems present unique challenges, often requiring
custom solutions:

High cost of data acquisition

High-dimensional observations and large parameter spaces
Complex noise processes

Uncertainty quantification

Robust design/control
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A key step forward is to bridge conventional domain-informed modeling

and machine learning to tackle these challenges



This Talk...

Insights from our experience in building predictive models for
scientific data.
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Though model choices, learning methods and constraints are highly

specific to the application and data characteristics, there are useful ideas
to share!



Use representation learning to explore and study complex
relationships in scientific data!



Identifying the True Generative Factors of Data Can Help
Build Reliable Predictive Models

Representation learning allows us to infer latent features that
succinctly describe the governing physical process.

Desired properties: (i) task-agnostic; (ii) low-dimensional; (iii) robust
to data noise; (iv) preserves key relationships; (v) disentangled
factors; (vi) known generative process.

A long-standing problem in machine learning — since the advent of
principal component analysis.



Representation Learning Methods can be Grouped into
Three Categories

(i) Generative — Ability to sample data
using a parametric/non-parametric
generative model with low number of
latent factors.

Input Layer
Output Layer

________________

(ii)) Context prediction — Predict missing ! \
information using its context.

(iii) Contrastive — Build representations
by learning to contrast.




Explore Learned Representations using Scientific Priors

Example 1: Multi-modal measurements from an inertial confinement
fusion simulator
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Explore Learned Representations using Scientific Priors

Example 1: Multi-modal measurements from an inertial confinement
fusion simulator
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Explore Learned Representations using Scientific Priors

Example 1: Multi-modal measurements from an inertial confinement
fusion simulator
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Explore Learned Representations using Scientific Priors

Example 2: Dermoscopy images from subjects diagnosed with different
types of skin lesions
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Explore Learned Representations using Scientific Priors

Example 2: Dermoscopy images from subjects diagnosed with different
types of skin lesions

Latent space traversal
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Distribution shifts are features, not bugs!



Understanding Inductive Biases of ML Models is Critical to
Characterizing their Behavior

Data you expect vs. Data you get
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Understanding Inductive Biases of ML Models is Critical to

Characterizing their Behavior
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Inferring the Unknown” Distribution Shifts is Essential to
Effectively Utilize the Representations in Practice

How should we transform “unseen” observations to look like
they were produced by the “*known"” data generation process?

MimicGAN
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Understanding Inductive Biases of ML Models is Critical to
Characterizing their Behavior

Example: Matching real-experiments (X-ray images) to simulations from
an inertial confinement fusion simulator (hydra).

Experiments — Asymmetric Equivalent Simulations — Symmetric




Your model is as good as your loss function!



Machine Learning Eventually Boils Down to Optimizing
Parameters Based on a Fidelity Metric

Does patient A have cancer? > Does the patient’s scan look
different enough from the database of healthy subjects? -2

Minimize the cross-entropy loss

In many predictive modeling problems in sciences, we deal with
continuous-valued targets and we use mean-squared loss as the

objective.

Choice of loss function places a prior on the distribution of residuals

L2 error optimal when the distribution is symmetric
y — f(x)

Not robust when there are outliers



Machine Learning Eventually Boils Down to Optimizing
Parameters Based on a Fidelity Metric

Example: Approximating a synthetic function using a 1-layer MLP
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Learn-by-Calibrating: Prior-free Loss Function Design
Based on Interval Calibration

If a model produces a prediction interval [y — 6", + ¢¥]
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Machine Learning Eventually Boils Down to Optimizing
Parameters Based on a Fidelity Metric

Example: Approximating a synthetic function using a 1-layer MLP
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Machine Learning Eventually Boils Down to Optimizing
Parameters Based on a Fidelity Metric

LbC consistently outperforms existing
symmetric losses when the residual
distribution is skewed
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Sometimes, we need to build our own architectures...



In Deep Learning, Model Architectures Act as a Prior in
Defining the Hypothesis Space

Convolutional networks that enforce local smoothness act as a
strong prior for images — Even untrained networks can provide

useful feature representations.

In scientific problems, sometimes we need to design custom
architectures to provide strong inductive biases.

These solutions rarely generalize, however, can provide significant
performance gains for the problem at hand.



Designing Custom Model Architectures to Provide Strong
Inductive Biases

Example: Modeling human brain connectomes for predictive modeling

Connectome is a comprehensive map of structural and functional
connectivity of neural pathways in the brain.

Human Brain - Structural
Graph Connectome

Connectome Graph generation from T1 images and probabilistic Tractography



Designing Custom Model Architectures to Provide Strong
Inductive Biases

Example: Modeling human brain connectomes for predictive modeling

Since connectomes can be viewed as a graph, one might be tempted to
use graph neural networks (e. g. molecular chemistry) — Information
diffusion property does not hold.

We proposed a novel
message passing framework
that is aptly suited to process
relational structure without

the need for diffusion.
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Parcellation of Brain Weighted connectivities . RGNN mirrors the '
to 84 different regions between regions indicating hierarchical structure in
number of fibres connectome



Designing Custom Model Architectures to Provide Strong
Inductive Biases

Example: Modeling human brain connectomes for predictive modeling
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Do not just predict, but also introspect!



Using Machine Learning Models in Critical Applications
Requires a Rigorous Characterization of its Behavior

Gaining scientific insights from learned models needs introspection
driven by user-specified hypotheses.

A broad class of interpretability techniques exist to uncover the
“most plausible” explanations for a decision.

Grad-CAM for “Cat" Grad-CAM for “Dog"
Va 3 ‘




Using Machine Learning Models in Critical Applications
Requires a Rigorous Characterization of its Behavior

However, in science problems, we need to deal with more complex
hypotheses.

Example: Analysis of COVID-19 infections from CXR data using
counterfactual reasoning

COUNTERFACTUAL

USER-SPECIFIED HYPOTHESIS
CXR LATENT SPACE

' How should the CXR change, if the diagnosis state should be
Q COVID-19 and the patient age is predicted as 40?
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Using Machine Learning Models in Critical Applications
Requires a Rigorous Characterization of its Behavior

Hypothesis: The severity of the disease infection increases or decreases

Progresswn Towards High Severity Progression Towards Survwal
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Using Machine Learning Models in Critical Applications
Requires a Rigorous Characterization of its Behavior

Hypothesis: Manifestation of COVID-19 is different from other types of
pneumonia known before

Progression from Healthy to Disease State
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Summary

Scientific data provide unique Using suitable machine
challenges and opportunities {lag~a® !earning methods will help

towards advancing machine L, accelerate scientific analysis
learning and discovery
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Questions?



