

Thoughts on Building Machine Learning Models with Scientific Data

Jay Thiagarajan

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

 Lawrence Livermore
National Laboratory

Data-Driven Methods are Rapidly Transforming Workflows in Science and Engineering

A U.S. Department of Energy initiative could refurbish existing supercomputers, turning them into high-performance artificial intelligence machines. U.S. DEPARTMENT OF ENERGY

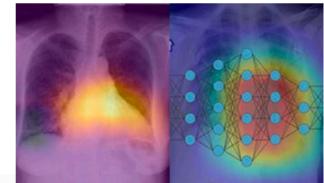
Department of Energy plans major AI push to speed scientific discoveries

National Institute of Biomedical Imaging and Bioengineering
Creating Biomedical Technologies to Improve Health

National experts chart roadmap for AI in medical imaging

Implications and opportunities for AI implementation in diagnostic medical imaging formulated in workshop report published in the journal, *Radiology*

Radiologists train for years to attain the skills to interpret subtle and not-so-subtle distinctions in medical images. Artificial intelligence (AI) is poised to make profound impact on their efforts, assisting human experts with computer-powered algorithms to recognize anatomical anomalies, enhance interpretation, and improve classification of medical imaging results.

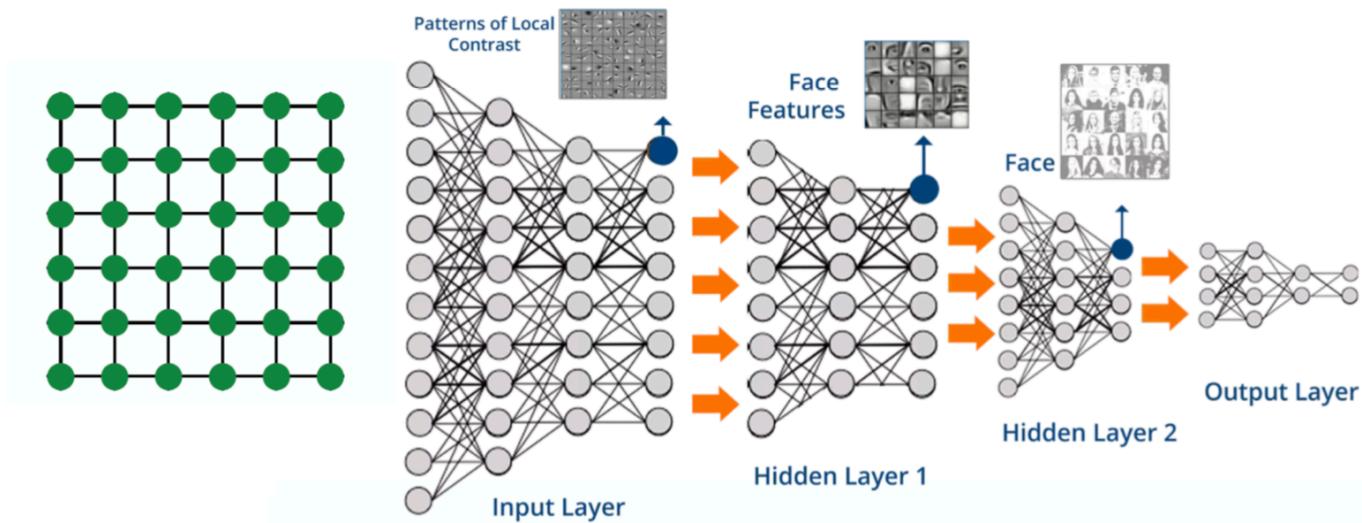


Vision:

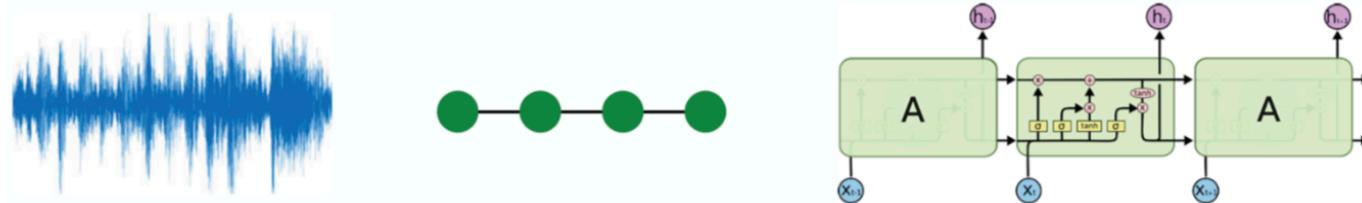
Transform DOE into a world-leading AI enterprise by accelerating the research, development, delivery, and adoption of AI.

Modern Machine Learning Techniques are Highly Effective in Modeling Complex Data

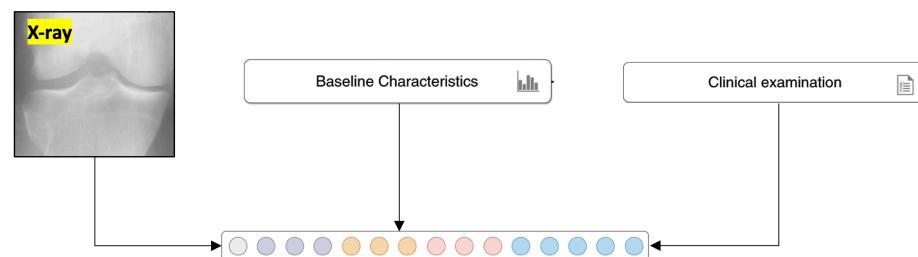
Data defined on spatial grids



Time-varying data



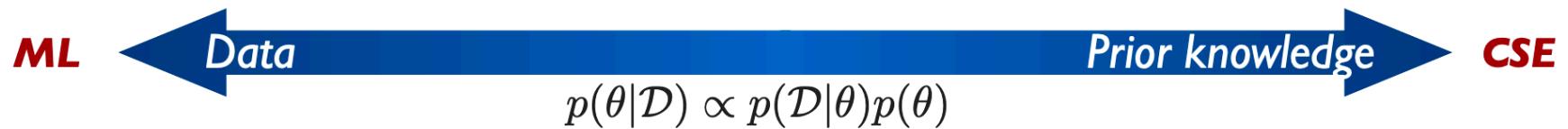
Multi-modal data



What is Different About Applying Machine Learning Tools to Scientific Data?

Scientific problems present unique challenges, often requiring custom solutions:

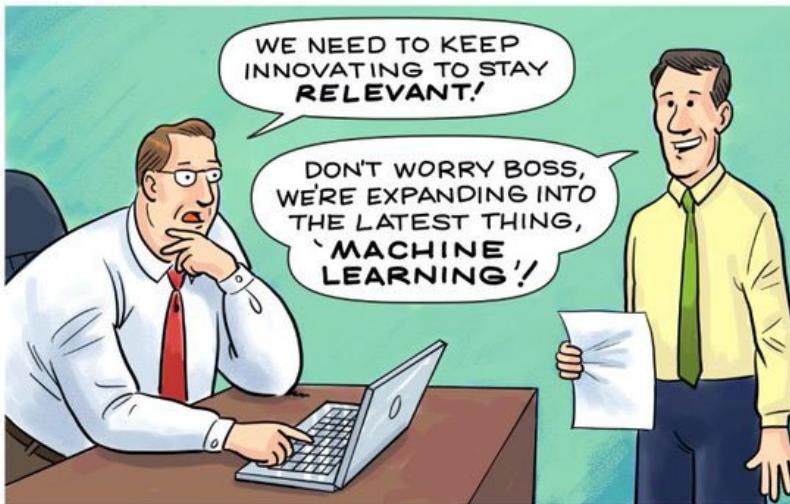
- High cost of data acquisition
- High-dimensional observations and large parameter spaces
- Complex noise processes
- Uncertainty quantification
- Robust design/control



A key step forward is to bridge conventional domain-informed modeling and machine learning to tackle these challenges

This Talk...

Insights from our experience in building predictive models for scientific data.



Judea Pearl @yudapearl · Jul 18

I like the name "Data for Science", which counters the current direction of "Data Science", as if Data in themselves are the target of scientific exploration.

“Though model choices, learning methods and constraints are highly specific to the application and data characteristics, there are useful ideas to share!

Use representation learning to explore and study complex relationships in scientific data!

Identifying the True Generative Factors of Data Can Help Build Reliable Predictive Models

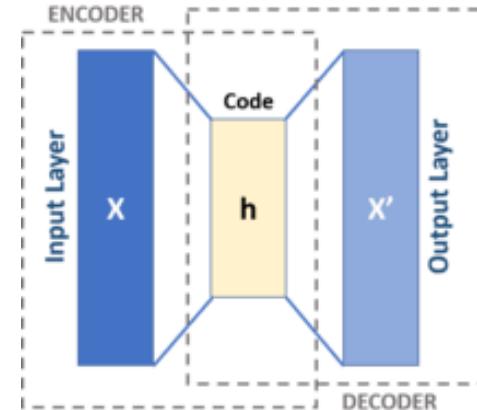
Representation learning allows us to infer latent features that succinctly describe the governing physical process.

Desired properties: (i) task-agnostic; (ii) low-dimensional; (iii) robust to data noise; (iv) preserves key relationships; (v) disentangled factors; (vi) known generative process.

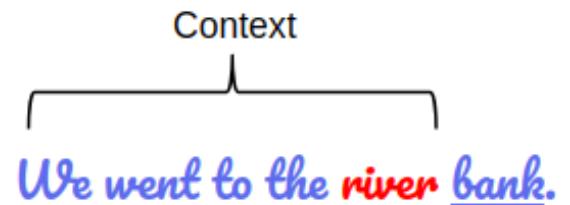
A long-standing problem in machine learning – since the advent of principal component analysis.

Representation Learning Methods can be Grouped into Three Categories

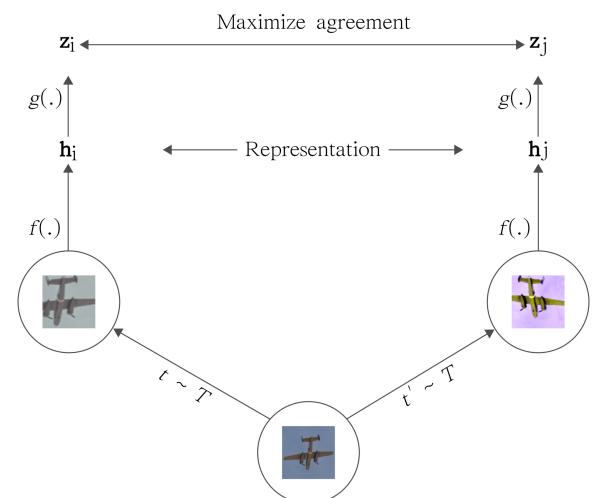
(i) Generative – Ability to sample data using a parametric/non-parametric generative model with low number of latent factors.



(ii) Context prediction – Predict missing information using its context.

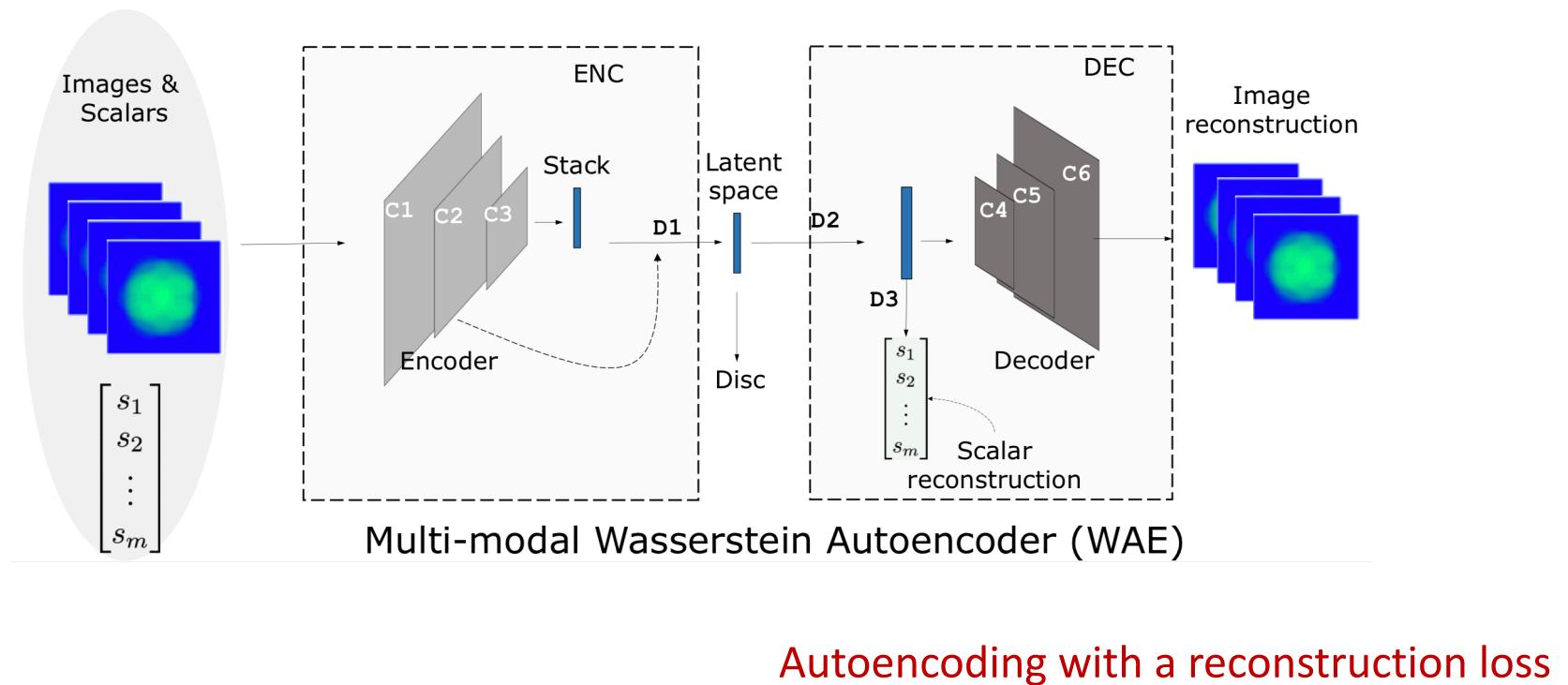


(iii) Contrastive – Build representations by learning to contrast.



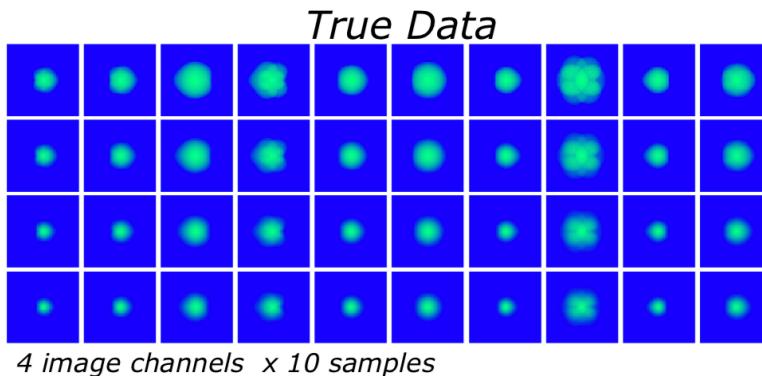
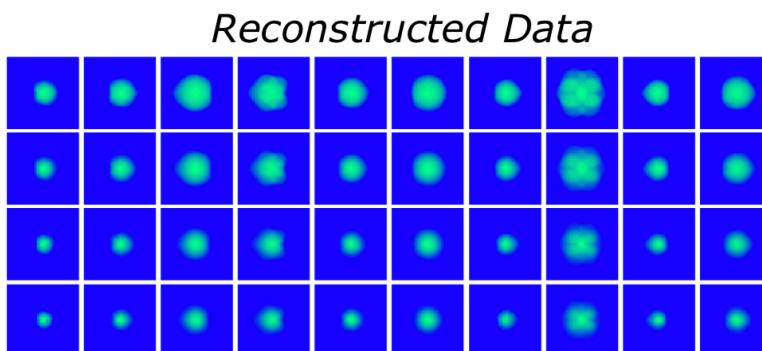
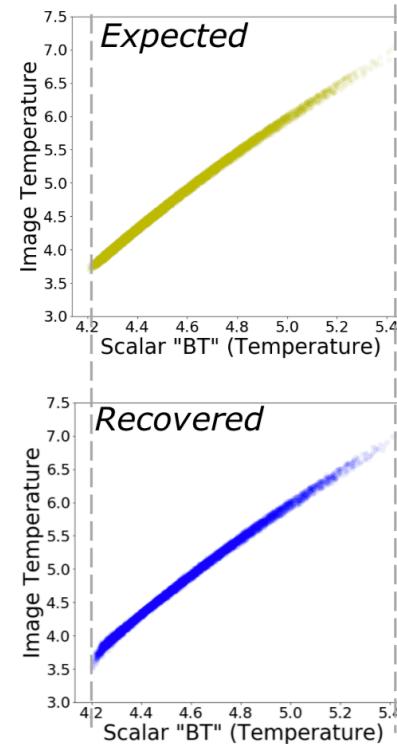
Explore Learned Representations using Scientific Priors

Example 1: Multi-modal measurements from an inertial confinement fusion simulator



Explore Learned Representations using Scientific Priors

Example 1: Multi-modal measurements from an inertial confinement fusion simulator

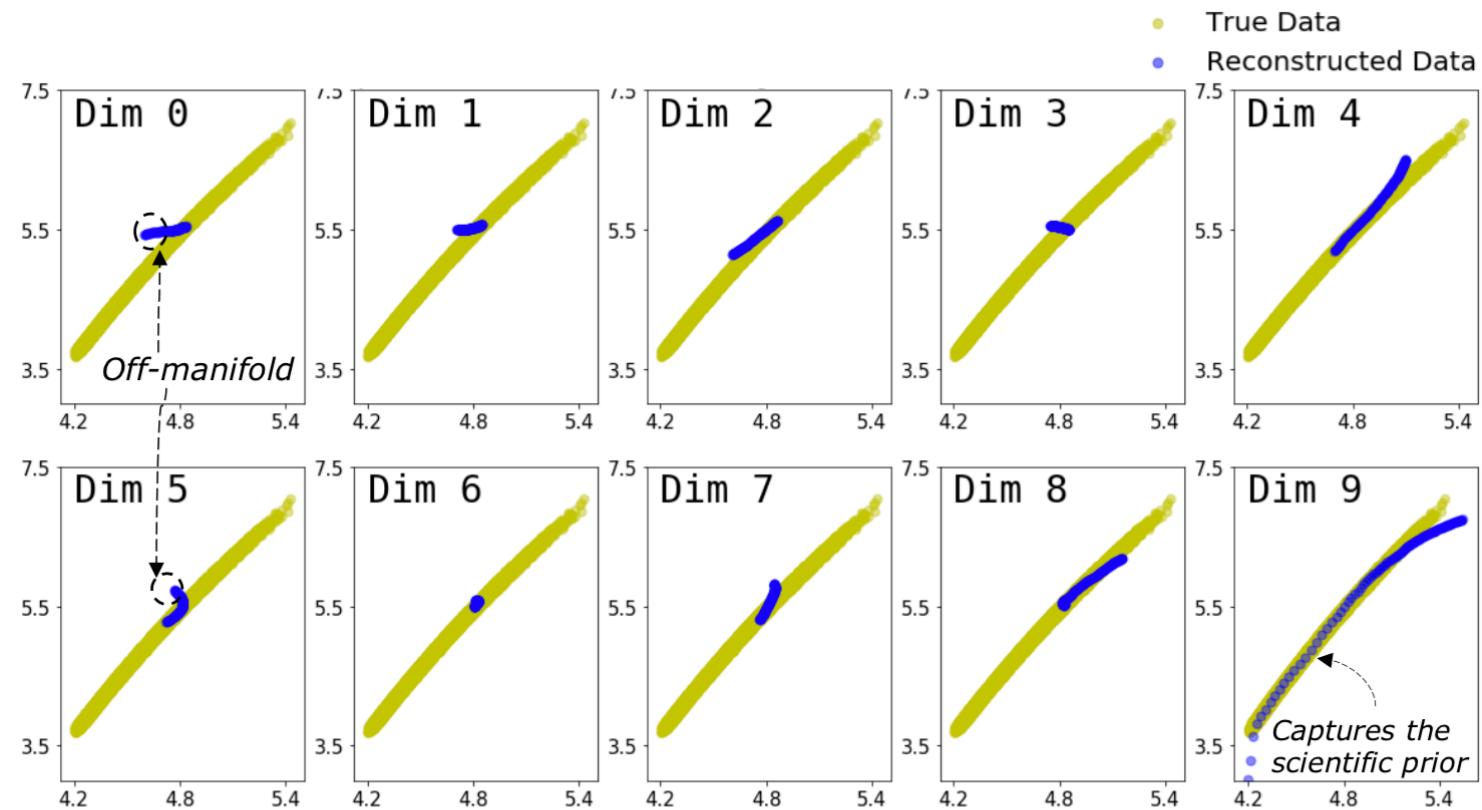


We use notions of thermal equilibrium to relate predicted ion temperatures to estimates of electron temperature formed by ratios of x-ray image brightness.

Evaluating the scientific prior on reconstructed and true samples

Explore Learned Representations using Scientific Priors

Example 1: Multi-modal measurements from an inertial confinement fusion simulator



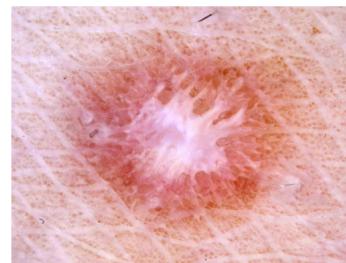
Walking along different directions on the physics manifold → evaluating the scientific prior

Explore Learned Representations using Scientific Priors

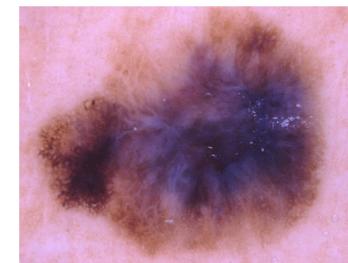
Example 2: Dermoscopy images from subjects diagnosed with different types of skin lesions

Nevus

Dermatofibroma



Melanoma



Pigmented
Bowen's

Pigmented Benign
Keratoses

Basal Cell
Carcinoma



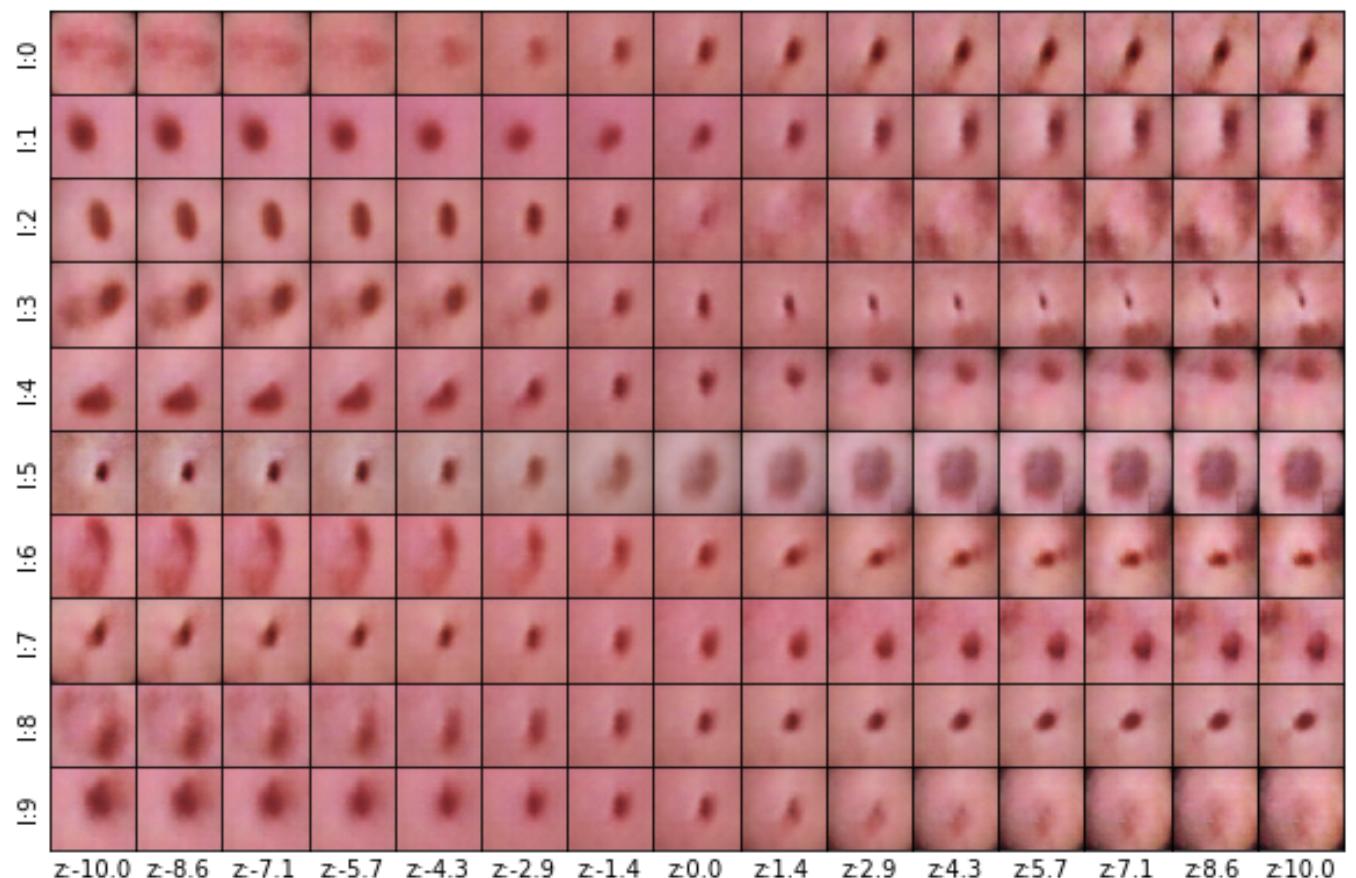
Vascular

Explore Learned Representations using Scientific Priors

Example 2: Dermoscopy images from subjects diagnosed with different types of skin lesions

Latent space traversal
from a disentangled
VAE

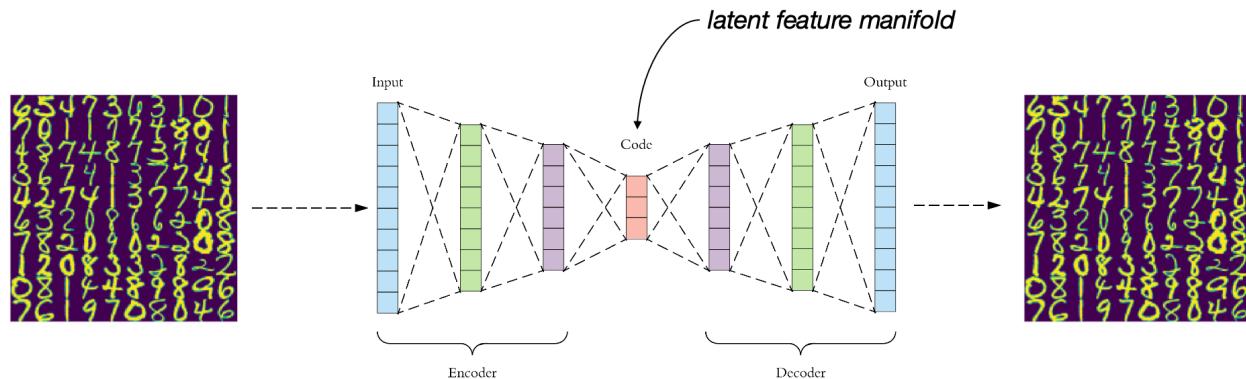
- A: Asymmetry
- B: Border
- C: Color
- D: Diameter



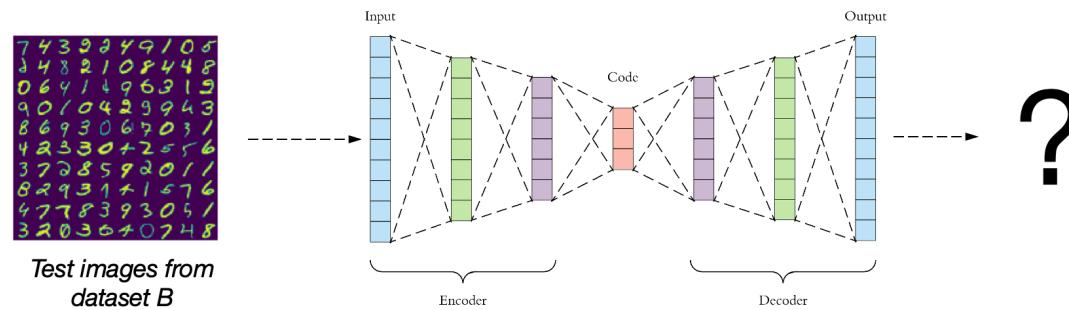
Distribution shifts are features, not bugs!

Understanding Inductive Biases of ML Models is Critical to Characterizing their Behavior

Data you expect vs. Data you get



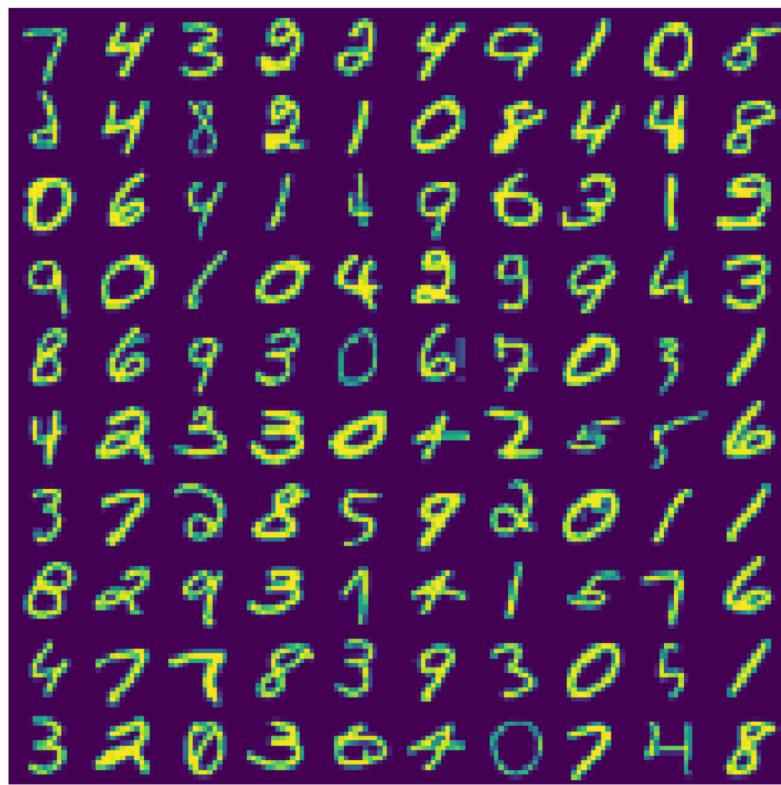
Digits Autoencoder
(trained on dataset A)



Digits Autoencoder

Understanding Inductive Biases of ML Models is Critical to Characterizing their Behavior

What we put in



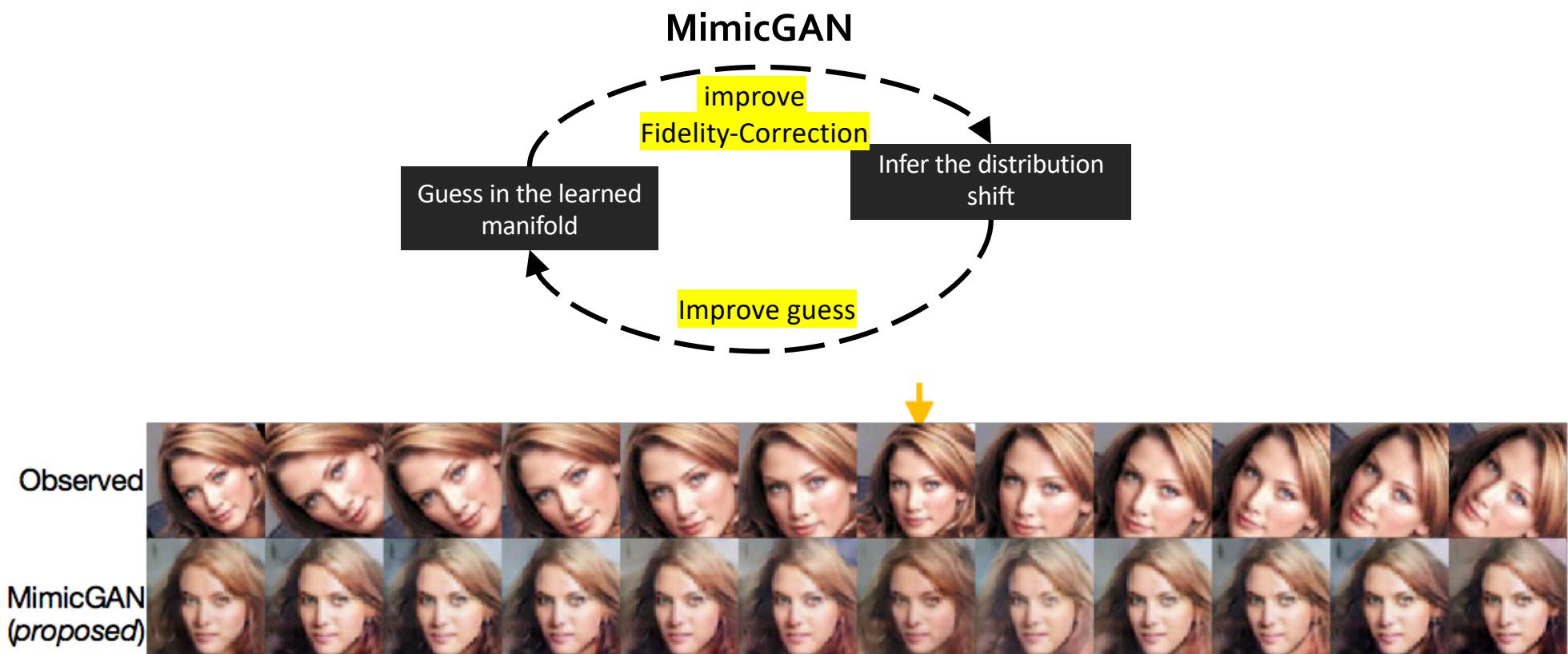
7 4 3 9 2 4 9 1 0 5
2 4 8 2 1 0 8 4 4 8
0 6 4 1 4 9 6 3 1 9
9 0 1 0 4 2 9 9 4 3
8 6 9 3 0 6 7 0 3 1
4 2 3 3 0 4 2 5 5 6
3 7 0 8 5 9 2 0 1 1
8 2 9 3 1 4 1 5 7 6
4 7 7 8 3 9 3 0 5 1
3 2 0 3 6 4 0 7 4 8

What we got out

7 1 3 9 1 5 4 7 0 1
1 4 1 1 6 4 1 4 5
0 1 4 1 1 6 4 1 4 5
9 0 1 0 4 0 4 0 9 1 6
8 1 1 1 0 1 1 0 1 7
4 4 4 1 3 6 4 1 3 6
3 1 1 1 5 5 7 7 0 1 8
6 3 1 9 1 1 1 1 1 6
1 7 7 1 1 1 1 1 1 2
1 9 9 9 1 1 1 1 1 4 5

“Inferring the Unknown” Distribution Shifts is Essential to Effectively Utilize the Representations in Practice

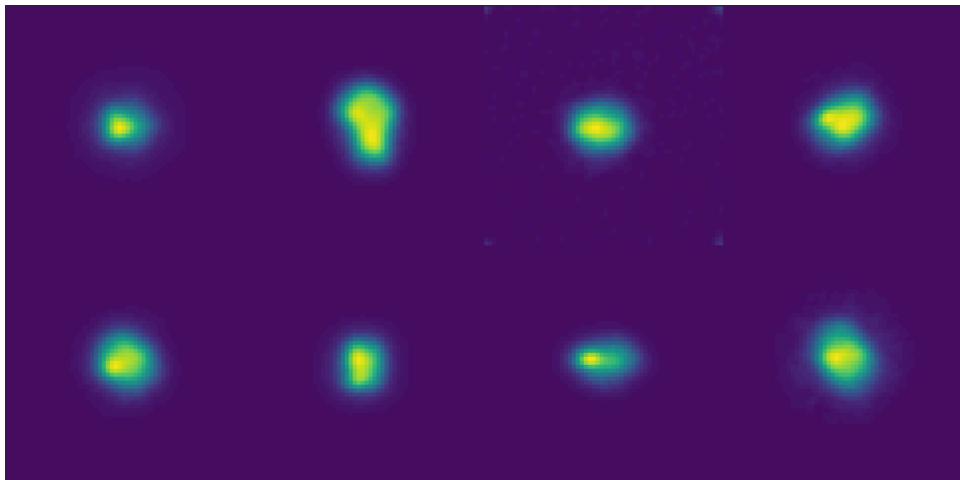
How should we transform “unseen” observations to look like they were produced by the “known” data generation process?



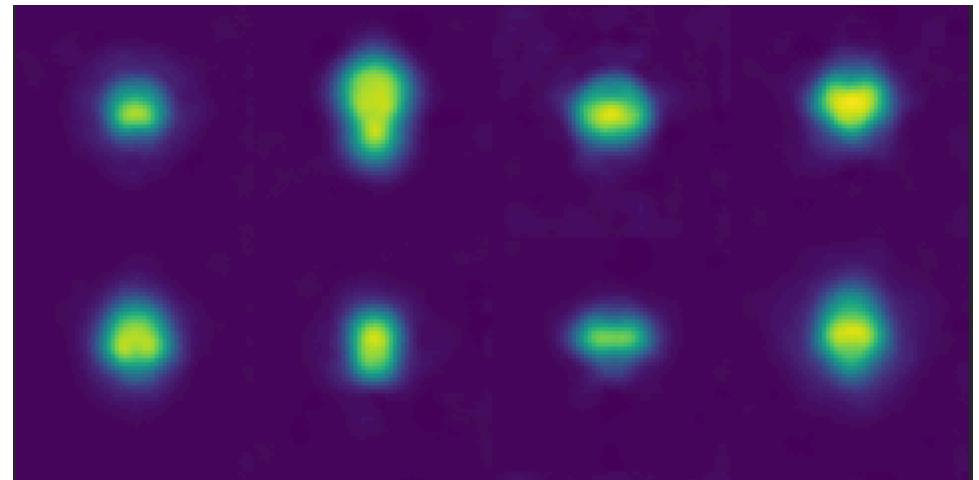
Understanding Inductive Biases of ML Models is Critical to Characterizing their Behavior

Example: Matching real-experiments (X-ray images) to simulations from an inertial confinement fusion simulator (hydra).

Experiments – Asymmetric



Equivalent Simulations – Symmetric



Your model is as good as your loss function!

Machine Learning Eventually Boils Down to Optimizing Parameters Based on a Fidelity Metric

Does patient A have cancer? → Does the patient's scan look different enough from the database of healthy subjects? → Minimize the cross-entropy loss

In many predictive modeling problems in sciences, we deal with continuous-valued targets and we use mean-squared loss as the objective.

Choice of loss function places a prior on the distribution of residuals

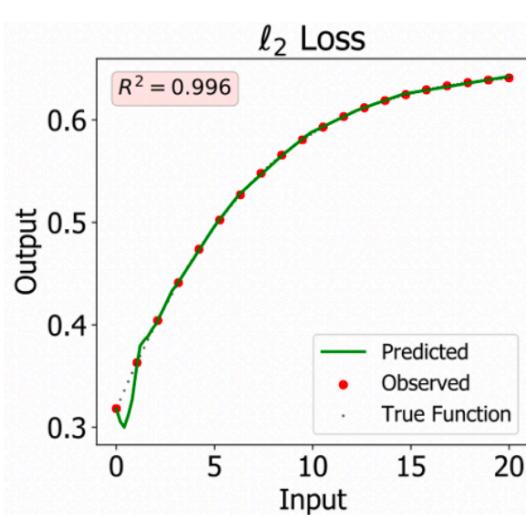
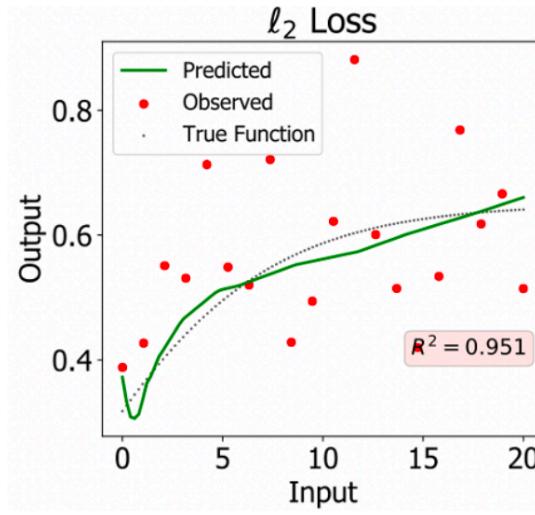
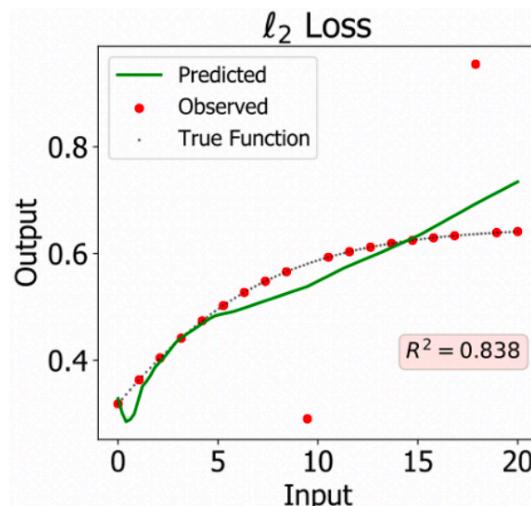
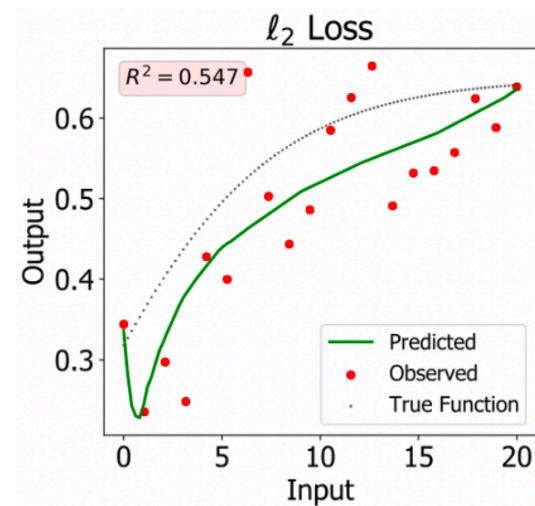
$$\mathbf{y} - f(\mathbf{x})$$

L2 error optimal when the distribution is symmetric

Not robust when there are outliers

Machine Learning Eventually Boils Down to Optimizing Parameters Based on a Fidelity Metric

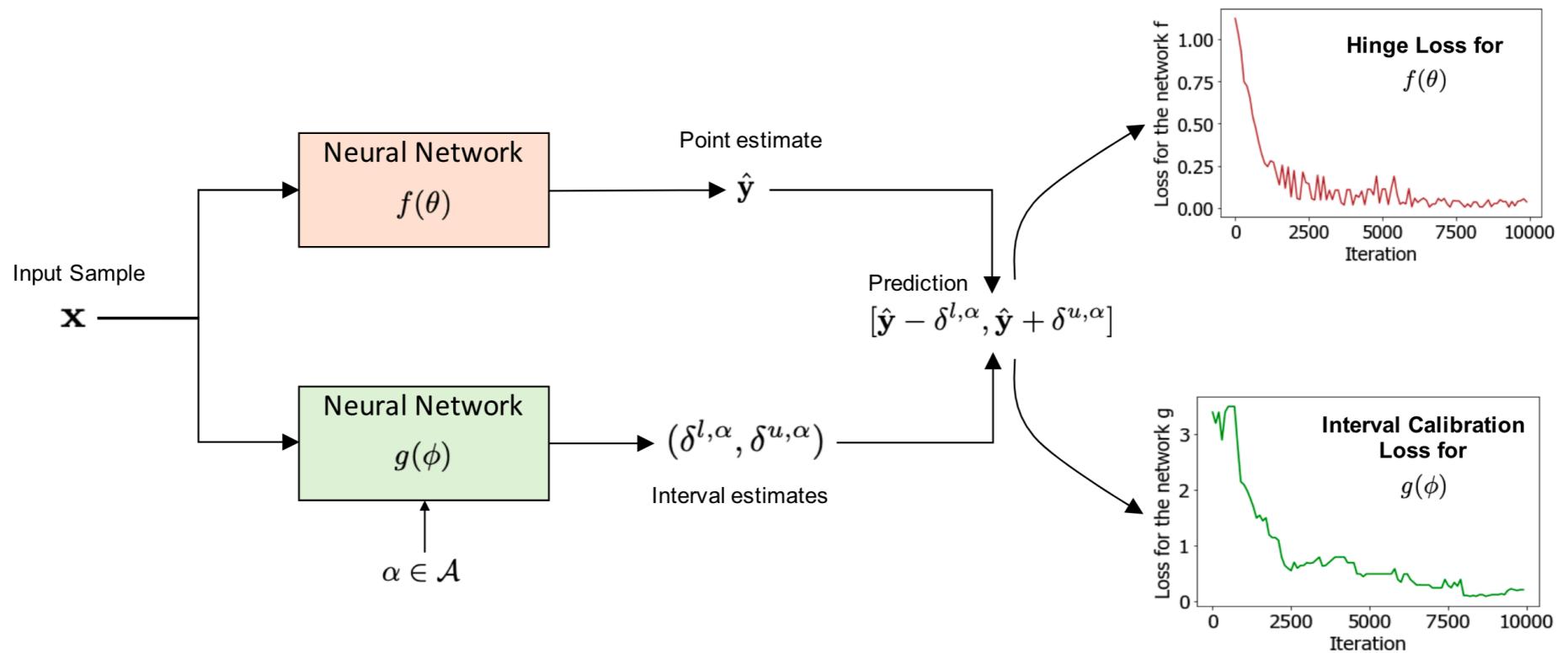
Example: Approximating a synthetic function using a 1-layer MLP



Learn-by-Calibrating: Prior-free Loss Function Design Based on Interval Calibration

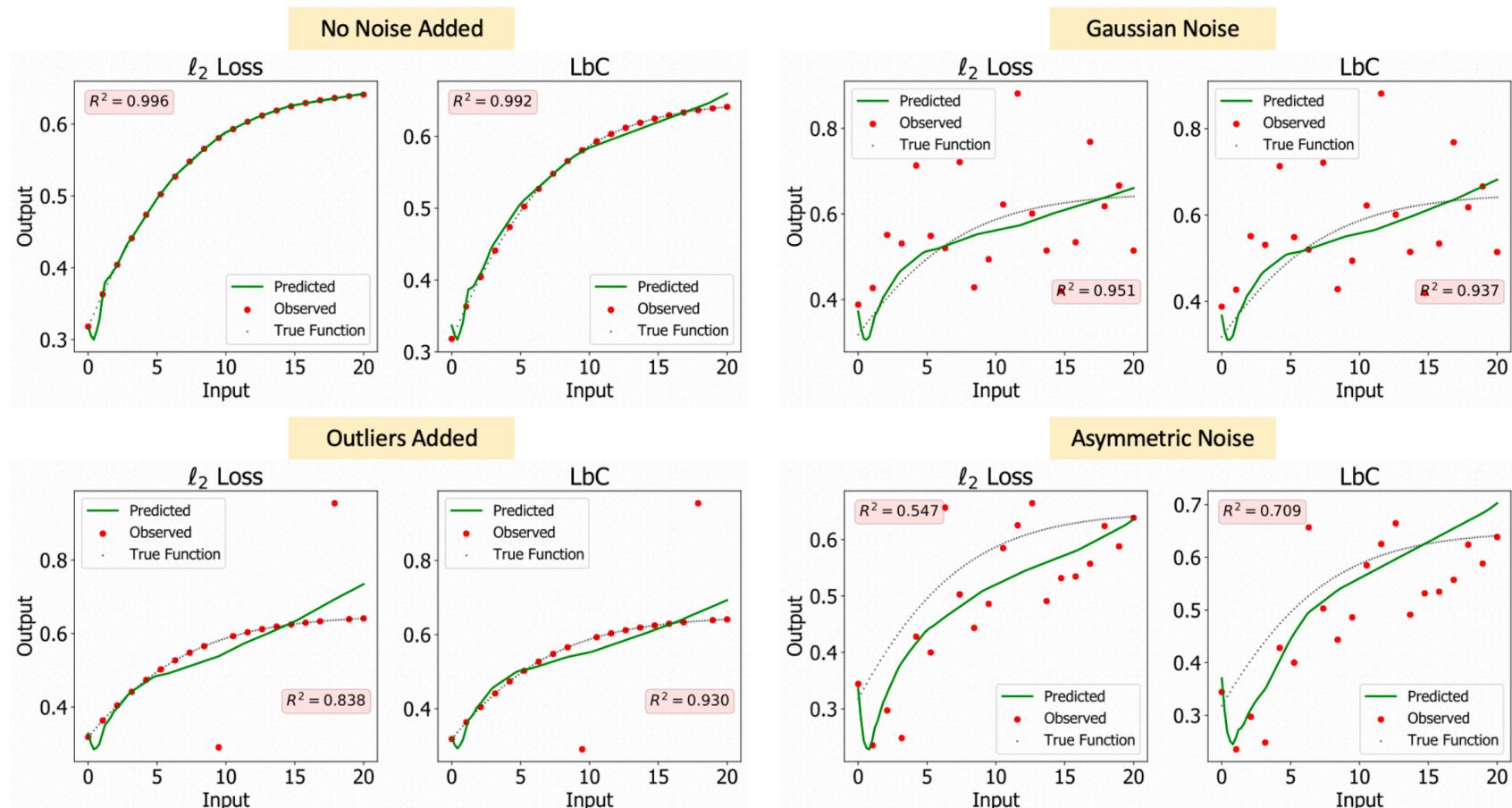
If a model produces a prediction interval $[\hat{y} - \delta^l, \hat{y} + \delta^u]$

$$p((\hat{y} - \delta^l) \leq y \leq (\hat{y} + \delta^u)) = \alpha \rightarrow \text{Confidence level}$$



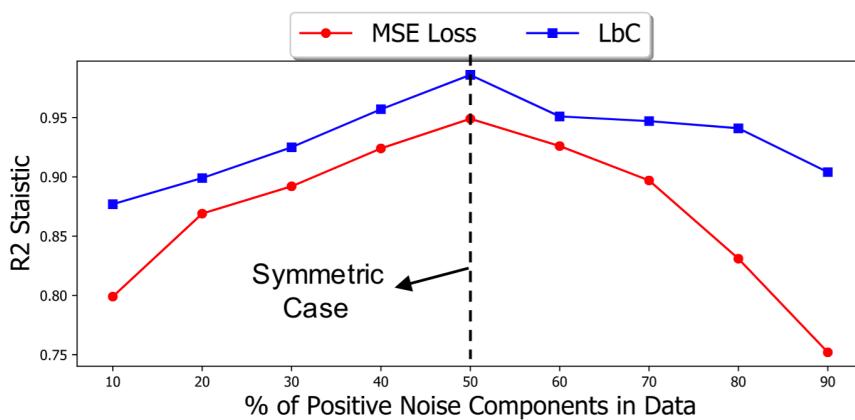
Machine Learning Eventually Boils Down to Optimizing Parameters Based on a Fidelity Metric

Example: Approximating a synthetic function using a 1-layer MLP

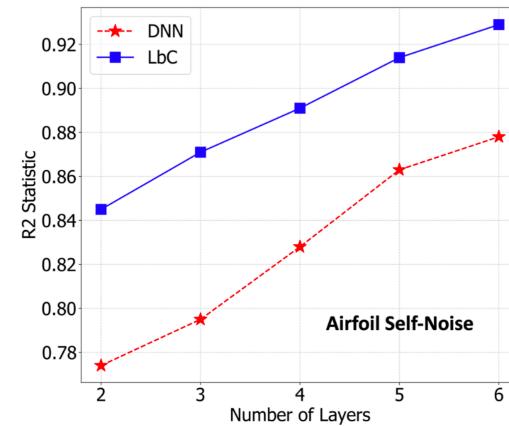
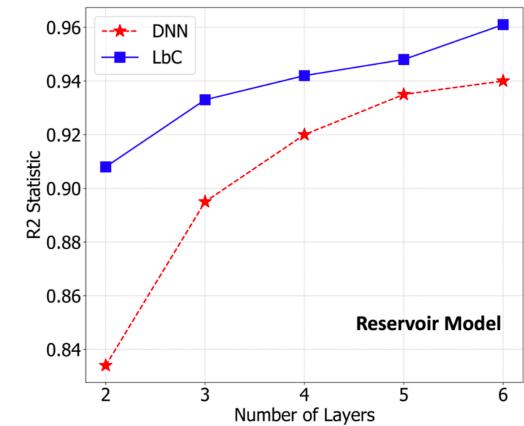


Machine Learning Eventually Boils Down to Optimizing Parameters Based on a Fidelity Metric

LbC consistently outperforms existing symmetric losses when the residual distribution is skewed



LbC requires lesser number of model parameters to match the performance of a standard model



Sometimes, we need to build our own architectures...

In Deep Learning, Model Architectures Act as a Prior in Defining the Hypothesis Space

Convolutional networks that enforce local smoothness act as a strong prior for images – Even untrained networks can provide useful feature representations.

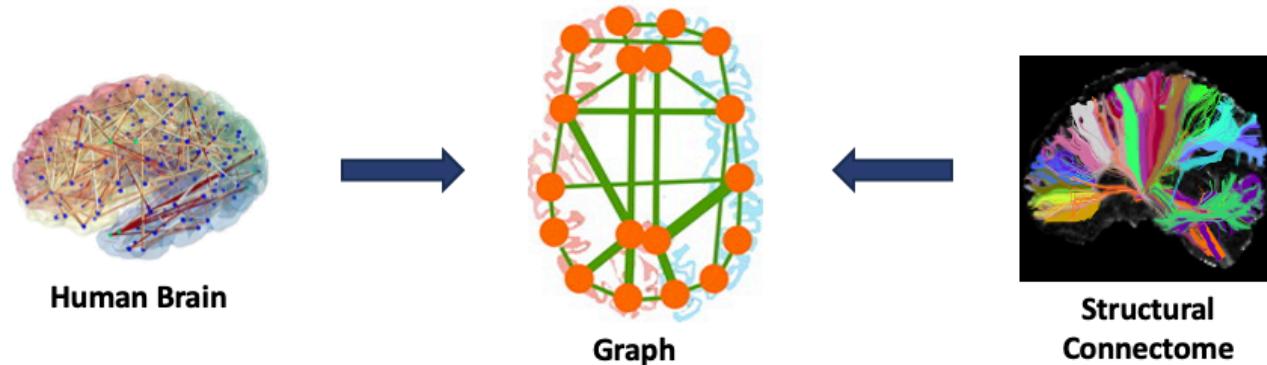
In scientific problems, sometimes we need to design custom architectures to provide **strong inductive biases**.

These solutions rarely generalize, however, can provide significant performance gains for the problem at hand.

Designing Custom Model Architectures to Provide Strong Inductive Biases

Example: Modeling human brain connectomes for predictive modeling

Connectome is a comprehensive map of structural and functional connectivity of neural pathways in the brain.

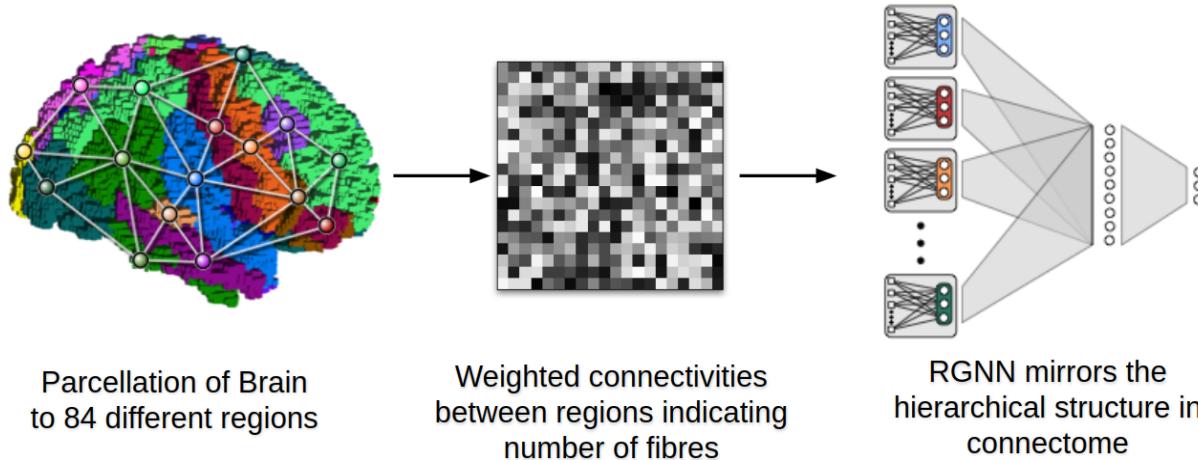


Connectome Graph generation from T1 images and probabilistic Tractography

Designing Custom Model Architectures to Provide Strong Inductive Biases

Example: Modeling human brain connectomes for predictive modeling

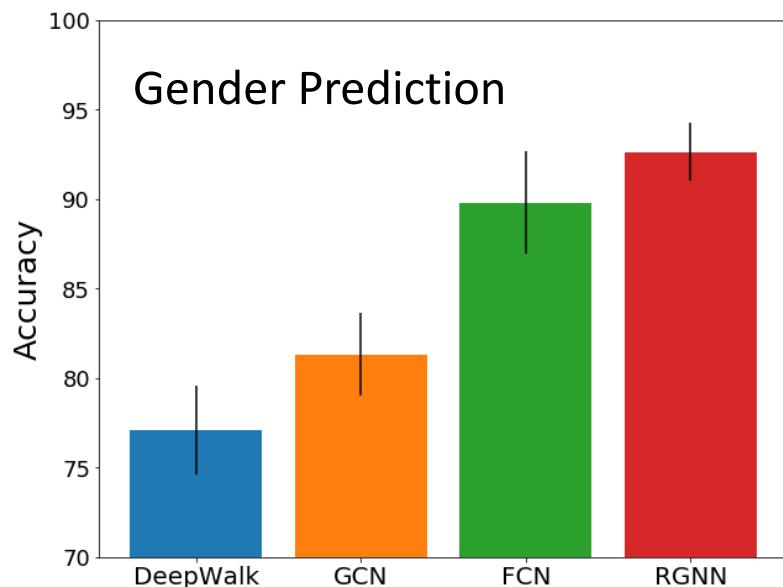
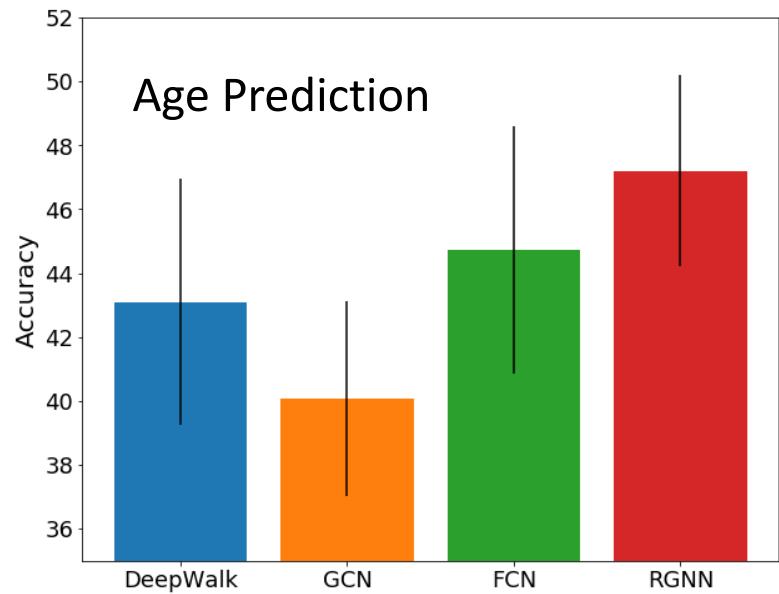
Since connectomes can be viewed as a graph, one might be tempted to use graph neural networks (e. g. molecular chemistry) – **Information diffusion property does not hold.**



We proposed a novel message passing framework that is aptly suited to process relational structure without the need for diffusion.

Designing Custom Model Architectures to Provide Strong Inductive Biases

Example: Modeling human brain connectomes for predictive modeling



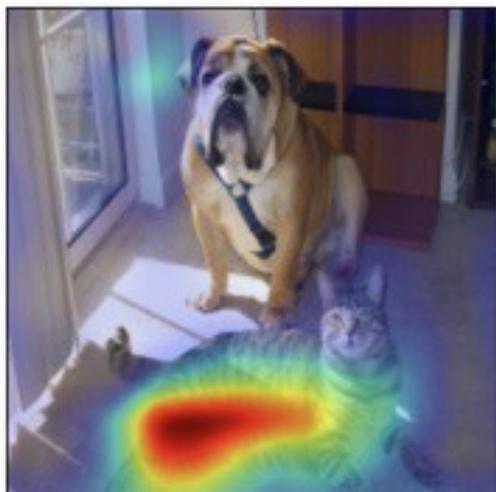
Do not just predict, but also introspect!

Using Machine Learning Models in Critical Applications Requires a Rigorous Characterization of its Behavior

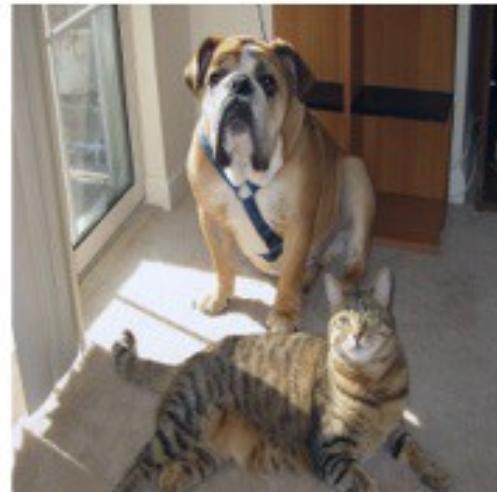
Gaining scientific insights from learned models needs introspection driven by *user-specified hypotheses*.

A broad class of interpretability techniques exist to uncover the “most plausible” explanations for a decision.

Grad-CAM for “Cat”



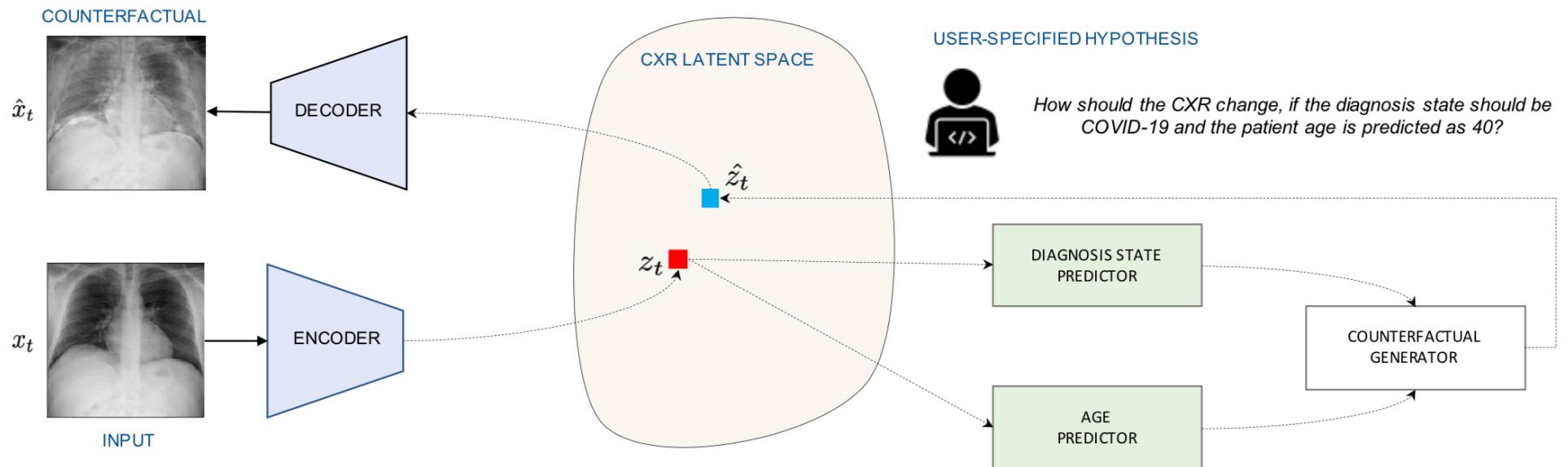
Grad-CAM for “Dog”



Using Machine Learning Models in Critical Applications Requires a Rigorous Characterization of its Behavior

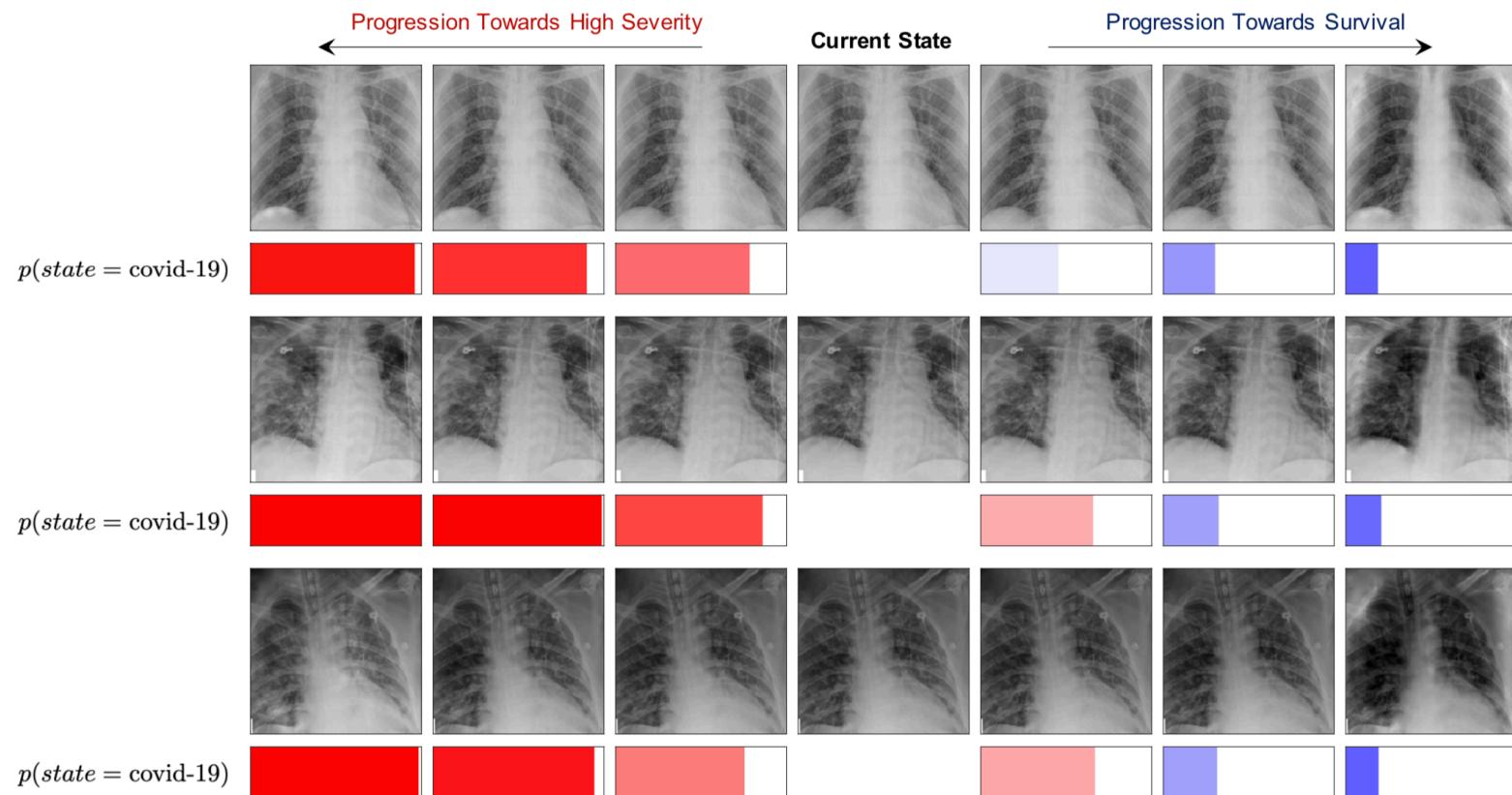
However, in science problems, we need to deal with more complex hypotheses.

Example: Analysis of COVID-19 infections from CXR data using counterfactual reasoning



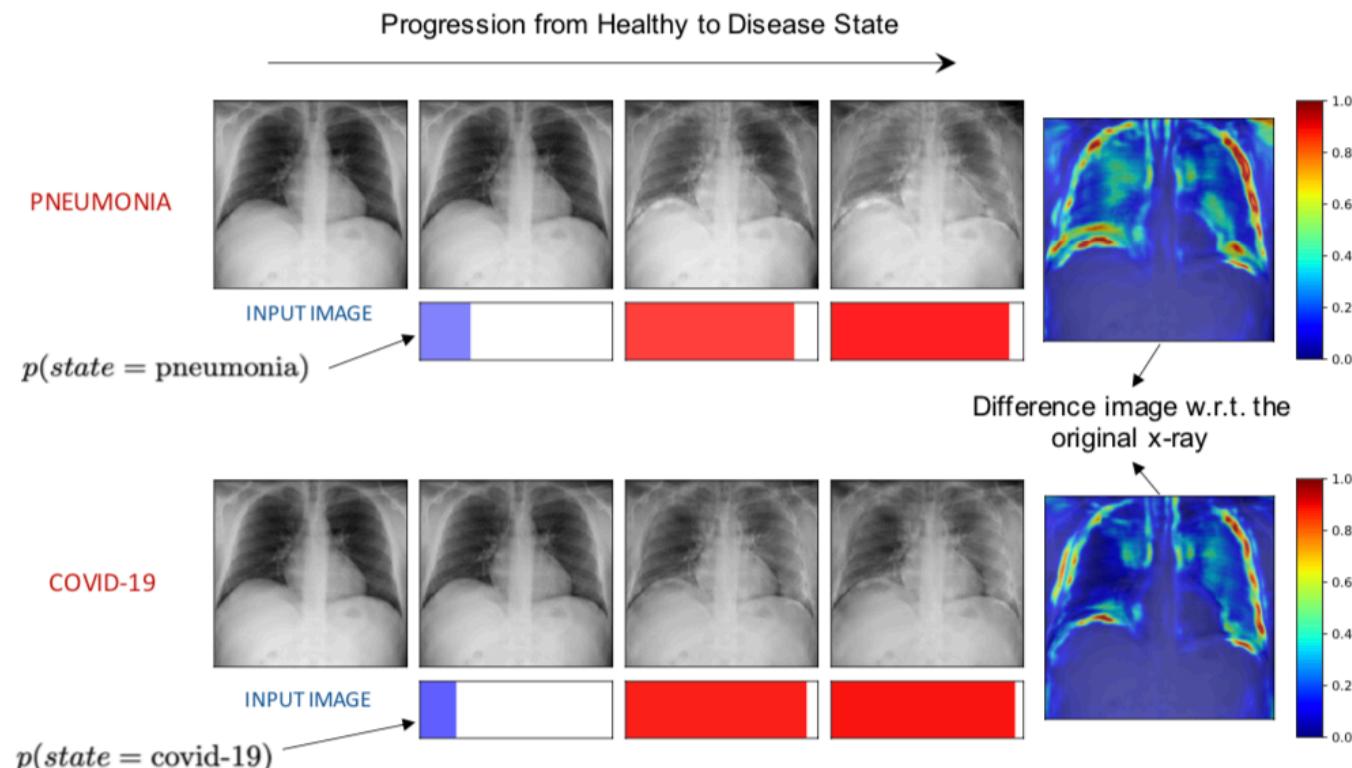
Using Machine Learning Models in Critical Applications Requires a Rigorous Characterization of its Behavior

Hypothesis: The severity of the disease infection increases or decreases



Using Machine Learning Models in Critical Applications Requires a Rigorous Characterization of its Behavior

Hypothesis: Manifestation of COVID-19 is different from other types of pneumonia known before



Summary

Scientific data provide unique challenges and opportunities towards advancing machine learning

Using suitable machine learning methods will help accelerate scientific analysis and discovery

Team

Rushil Anirudh

Bhavya Kailkhura

Timo Bremer

Vivek N

Bindya Venkatesh

Uday Shankar S

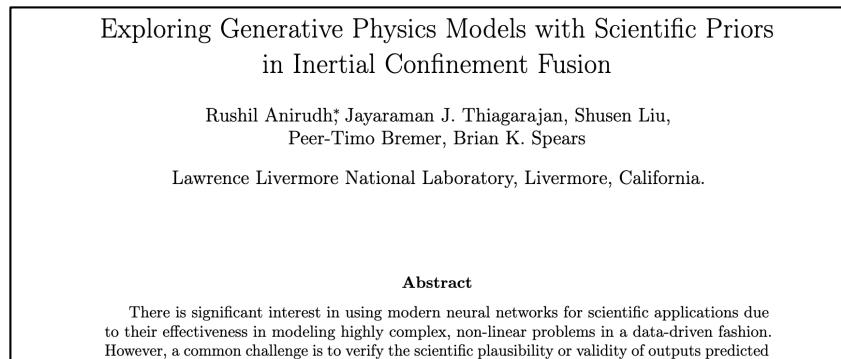
Relevant Papers

The screenshot shows the Proceedings of the National Academy of Sciences of the United States of America (PNAS) website. The main header features the PNAS logo and the text "Proceedings of the National Academy of Sciences of the United States of America". A search bar is located in the top right corner. Below the header, a navigation bar includes links for "Home", "Articles", "Front Matter", "News", "Podcasts", and "Authors". The "Articles" link is currently selected. A dropdown menu under "Articles" shows "NEW RESEARCH IN" with "Physical Sciences" and "Social Sciences" options. Below this, a "RESEARCH ARTICLE" section is displayed with the title "Improved surrogates in inertial confinement fusion with manifold and cycle consistencies". The article is associated with the "Check for updates" icon.

Designing Accurate Emulators for Scientific Processes using Calibration-Driven Deep Models

Jayaraman J. Thiagarajan, Bindya Venkatesh, Rushil Anirudh, Peer-Timo Bremer, Jim Gaffney, Gemma Anderson, Brian Spears

[Follow](#)



Exploring Generative Physics Models with Scientific Priors in Inertial Confinement Fusion

Rushil Anirudh*, Jayaraman J. Thiagarajan, Shusen Liu, Peer-Timo Bremer, Brian K. Spears

Lawrence Livermore National Laboratory, Livermore, California.

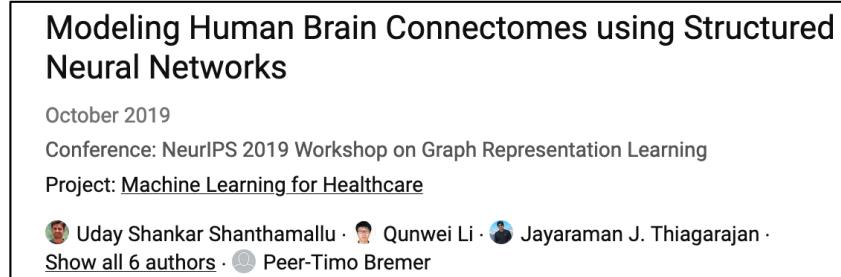
Abstract

There is significant interest in using modern neural networks for scientific applications due to their effectiveness in modeling highly complex, non-linear problems in a data-driven fashion. However, a common challenge is to verify the scientific plausibility or validity of outputs predicted

Designing Deep Inverse Models for History Matching in Reservoir Simulations

Vivek Sivaraman Narayanaswamy*, Jayaraman J. Thiagarajan†, Rushil Anirudh†,
Fahim Forouzanfar†, Peer-Timo Bremer†, Xiao-Hui Wu†
*Arizona State University, †Lawrence Livermore National Laboratory,
†ExxonMobil Upstream Research Company

Abstract



Modeling Human Brain Connectomes using Structured Neural Networks

October 2019

Conference: NeurIPS 2019 Workshop on Graph Representation Learning

Project: [Machine Learning for Healthcare](#)

 Uday Shankar Shanthamallu · Qunwei Li · Jayaraman J. Thiagarajan · [Show all 6 authors](#) · Peer-Timo Bremer

 Springer Link

Published: 05 March 2020

MimicGAN: Robust Projection onto Image Manifolds with Corruption Mimicking

[Rushil Anirudh](#) , [Jayaraman J. Thiagarajan](#), [Bhavya Kailkhura](#) & [Peer-Timo Bremer](#)

Questions?