Improved Deep Embeddings for Inferencing with Multi-Layered Graphs

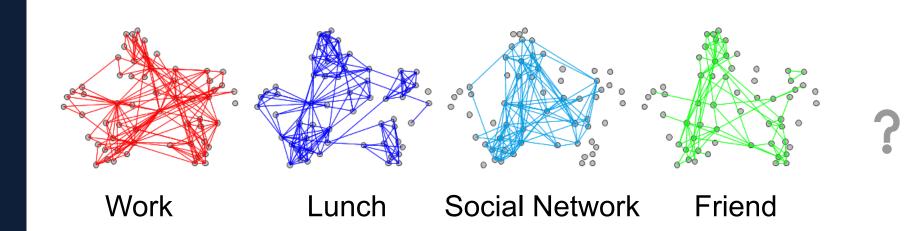
Huan Song¹, Jayaraman J. Thiagarajan²

¹ Bosch Research North America

² Lawrence Livermore National Labs

Introduction

- **Problem:** Inferencing with multi-layered graphs different relational structure exists in each layer for the same set of nodes.
- Goal: Obtaining concise embeddings that preserve the multi-view relationships.

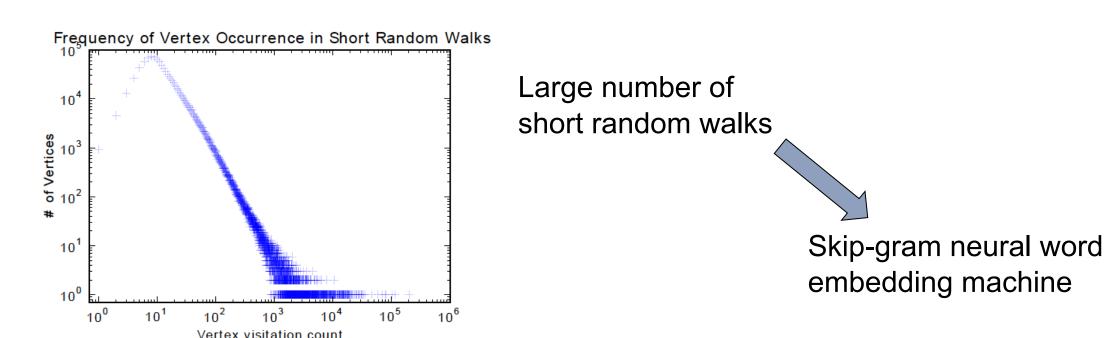


Node embeddings for inferencing tasks:

- node classification
- link prediction
- community detection
- Challenges: Heterogeneity in the relationship types, varying levels of sparsity in different layers and scalability with increasing number of layers.
- Solution: A scalable embedding approach based on Deepwalk-style optimization and refinement to encourage cohesive community formation.

Prior Art

- Single-layer graph embedding algorithms:
- Scalable approaches based on distributional hypothesis [1]



- Multi-layered graph embedding algorithms:
- Modularity-based approach for community detection [2]

$$Q_{\mathrm{multi}} = \frac{1}{2\mu} \sum_{i,j} \sum_{d,r} [(A_{ij}^d - \gamma_d \frac{k_i^d k_j^d}{2m_d}) \delta(d,r) + \delta(i,j) \sigma_j^{d,r}] \delta(g_i^d,g_j^r)$$

$$\underline{\underline{\text{Intra-layer contribution}}} \underline{\underline{\text{Inter-layer contribution}}} \underline{\underline{\text{Inter-layer contribution}}}$$

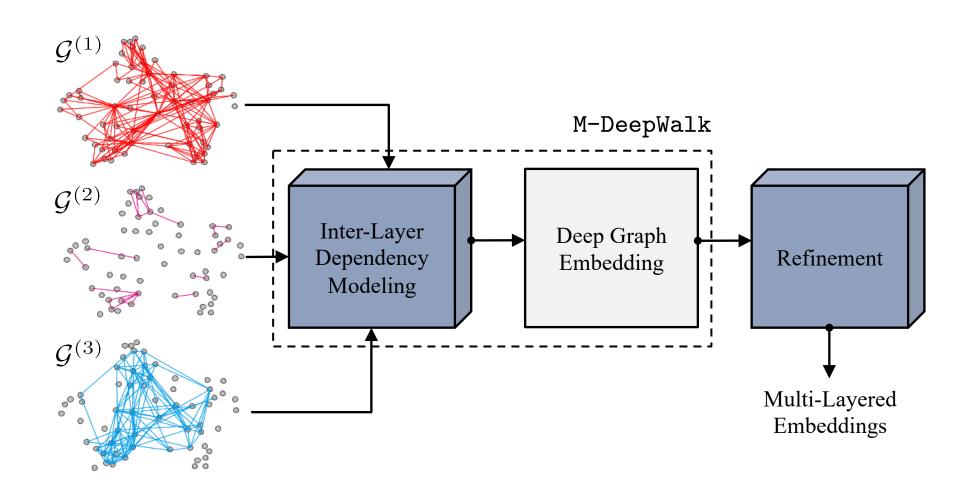
• Scalable multiplex network embedding [3]

Common embedding for corresponding nodes

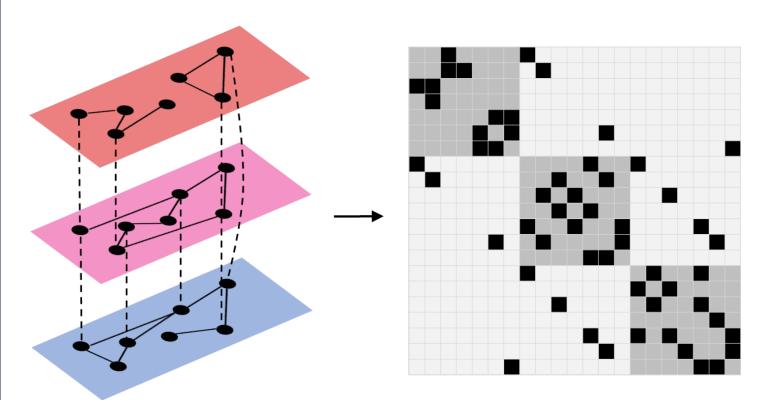
+

Additional embedding to capture aspect of each layer

Stage 1: M-DeepWalk



 Explicitly model inter-layer dependency by constructing supra-graph and then perform M-DeepWalk to learn the embeddings



Define inter-layer edges based on Jaccard Coefficient:

$$e_{ij}^{(l,m)} = 0, \text{if } i \neq j,$$

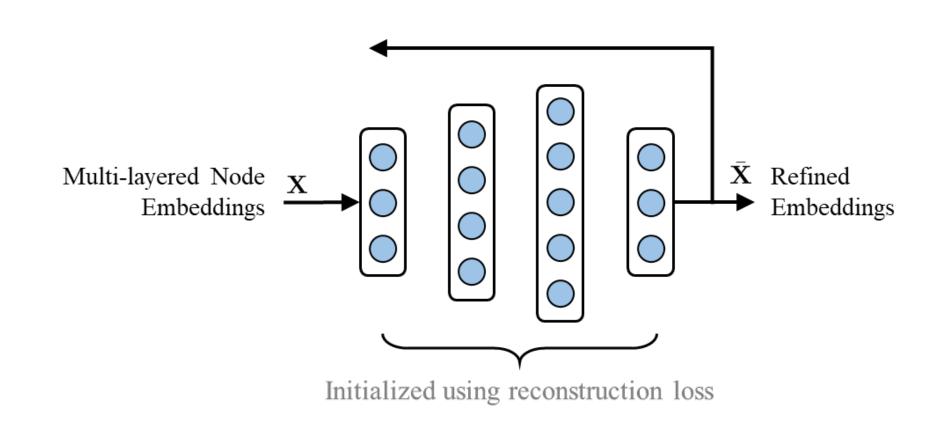
$$e_{ij}^{(l,m)} = \frac{|\mathcal{N}_i^{(l)} \cap \mathcal{N}_j^{(m)}|}{|\mathcal{N}_i^{(l)} \cup \mathcal{N}_i^{(m)}|}, \text{if } i = j$$

Stage 2: Refinement

A refinement stage to fine-tune the learned embeddings based on two loss terms:

$p_{ij} = \frac{q_{ij}^2/f_j}{\sum_{j'} q_{ij'}^2/f_j} \sum_{\mathbf{L} = \mathrm{KL}(\mathbf{P}||\mathbf{Q})}^{\mathbf{P}} \text{Move nodes to other communities to maximize modularity gain}$

 Obtain refined embeddings using the proposed losses – Embeddings are initialized using a simple reconstruction loss



Experimental Results

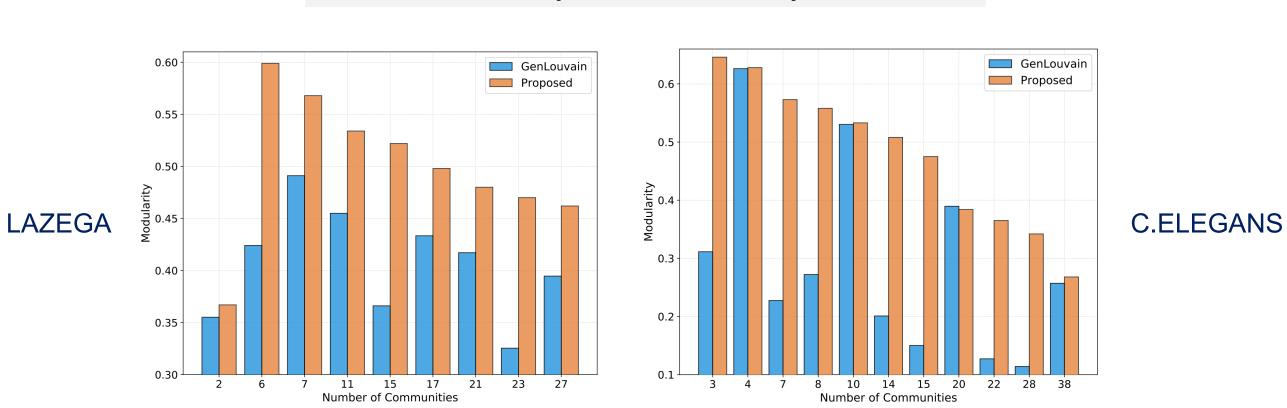
Task 1: Node Classification

Dataset / Accuracy (%)	Method							
	DeepWalk	Node2Vec	PMNE	MNE	Proposed (w/o refine)	Proposed (w/ refine)		
Leskovec-Ng	99.2	96.3	94.5	92.4	99.7	100		
Reinnovation	74.7	76.0	77.4	75.0	76.0	85.1		
Congress Votes	99.8	92.4	98.4	-	100	100		
Mammography	80.6	80.2	78.5	74.3	81.3	81.5		
Balance Scale	90.9	89.3	91.1	82.4	81.5	92.1		

Task 2: Link Prediction

Dataset /	Method						
AUROC	DeepWalk	LINE	Node2Vec	PMNE	Proposed		
Leskovec-Ng	0.84	0.62	0.71	0.49	0.84		
Reinnovation	0.99	0.78	0.99	0.78	0.99		
Congress Votes	1.0	0.99	1.0	0.79	1.0		
Mammography	1.0	1.0	1.0	0.77	1.0		
Balance Scale	1.0	1.0	1.0	0.82	1.0		
LAZEGA	0.88	0.69	0.8	0.82	0.91		
C.ELEGANS	0.93	0.77	0.89	0.75	0.94		

Task 3: Multi-layered Community Detection



References

[1] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena, "Deepwalk: Online learning of social representations," KDD 2014. [2] Peter J Mucha, Thomas Richardson, Kevin Macon, Mason A Porter, and Jukka-Pekka Onnela, "Community structure in time-dependent, multiscale, and multiplex networks," science, vol. 328, no. 5980, pp. 876–878, 2010. [3] Hongming Zhang, Liwei Qiu, Lingling Yi, and Yangqiu Song, "Scalable multiplex network embedding.," IJCAI 2018.